Raab Klaus, Brems Maarten A, Beneke Grischa, Dohi Takaaki, Rothörl Jan, Kammerbauer Fabian, Mentink Johan H, Kläui Mathias
Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany.
Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Nat Commun. 2022 Nov 15;13(1):6982. doi: 10.1038/s41467-022-34309-2.
Reservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize nonlinearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept is robust against device imperfections and can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.
储层计算(RC)被认为是超越冯·诺依曼计算的关键计算原理之一。磁斯格明子是磁性薄膜中类似拓扑粒子的自旋纹理,因其对外部刺激有强烈的非线性响应且具有固有的多尺度动力学特性,在实现储层计算方面特别有前景。然而,尽管存在一些关于斯格明子储层计算的理论方案,但迄今为止实验实现一直难以捉摸。在此,我们提出并通过实验证明了一种概念上全新的斯格明子储层计算方法,该方法利用了斯格明子的热激活扩散运动。通过限制电门控和热作用下的斯格明子运动,我们发现,在受限几何结构中,仅一个斯格明子就足以实现非线性可分函数,我们以异或门以及所有其他布尔逻辑门操作对此进行了演示。除了这种通用性外,储层计算概念还确保了低训练成本和超低功耗运行,其电流密度比现有自旋电子储层计算演示中使用的电流密度小几个数量级。我们提出的概念对器件缺陷具有鲁棒性,并且可以通过连接多个受限几何结构和/或在储层中包含更多斯格明子来轻松扩展,这表明其在可扩展和低能耗储层计算方面具有很高的潜力。