Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003-9263, USA.
Nat Commun. 2023 Feb 4;14(1):625. doi: 10.1038/s41467-023-36355-w.
Filamentous bundles are ubiquitous in Nature, achieving highly adaptive functions and structural integrity from assembly of diverse mesoscale supramolecular elements. Engineering routes to synthetic, topologically integrated analogs demands precisely coordinated control of multiple filaments' shapes and positions, a major challenge when performed without complex machinery or labor-intensive processing. Here, we demonstrate a photocreasing design that encodes local curvature and twist into mesoscale polymer filaments, enabling their programmed transformation into target 3-dimensional geometries. Importantly, patterned photocreasing of filament arrays drives autonomous spinning to form linked filament bundles that are highly entangled and structurally robust. In individual filaments, photocreases unlock paths to arbitrary, 3-dimensional curves in space. Collectively, photocrease-mediated bundling establishes a transformative paradigm enabling smart, self-assembled mesostructures that mimic performance-differentiating structures in Nature (e.g., tendon and muscle fiber) and the macro-engineered world (e.g., rope).
丝状束在自然界中无处不在,通过组装各种介观超分子元件实现了高度适应性的功能和结构完整性。工程学途径需要对多个细丝的形状和位置进行精确协调控制,以获得具有拓扑完整性的合成类似物,这在没有复杂机械或劳动密集型处理的情况下是一个重大挑战。在这里,我们展示了一种光交联设计,该设计将局部曲率和扭曲编码到介观聚合物细丝中,从而能够将其编程转化为目标 3 维几何形状。重要的是,丝状阵列的图案化光交联驱动自动旋转,形成高度缠结且结构坚固的连接丝状束。在单个细丝中,光交联释放了在空间中形成任意 3 维曲线的途径。总的来说,光交联介导的捆绑建立了一个变革性的范例,能够实现智能、自组装的介观结构,模拟自然界(例如肌腱和肌肉纤维)和宏观工程世界(例如绳索)中具有性能差异的结构。