Suppr超能文献

N-甲基咪唑分子作为自发质子泵实现动态界面 pH 缓冲效应,有利于高度可逆的锌金属负极。

Dynamically Interfacial pH-Buffering Effect Enabled by N-Methylimidazole Molecules as Spontaneous Proton Pumps toward Highly Reversible Zinc-Metal Anodes.

机构信息

State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.

出版信息

Adv Mater. 2023 Apr;35(15):e2208630. doi: 10.1002/adma.202208630. Epub 2023 Mar 4.

Abstract

Aqueous zinc-metal batteries have attracted extensive attention due to their outstanding merits of high safety and low cost. However, the intrinsic thermodynamic instability of zinc in aqueous electrolyte inevitably results in hydrogen evolution, and the consequent generation of OH at the interface will dramatically exacerbate the formation of dead zinc and dendrites. Herein, a dynamically interfacial pH-buffering strategy implemented by N-methylimidazole (NMI) additive is proposed to remove the detrimental OH at zinc/electrolyte interface in real-time, thus eliminating the accumulation of by-products fundamentally. Electrochemical quartz crystal microbalance and molecular dynamics simulation results reveal the existence of an interfacial absorption layer assembled by NMI and protonated NMI (NMIH ), which acts as an ion pump for replenishing the interface with protons constantly. Moreover, an in situ interfacial pH detection method with micro-sized spatial resolution based on the ultra-microelectrode technology is developed to probe the pH evolution in diffusion layer, confirming the stabilized interfacial chemical environment in NMI-containing electrolyte. Accordingly, with the existence of NMI, an excellent cumulative plating capacity of 4.2 Ah cm and ultrahigh Coulombic efficiency of 99.74% are realized for zinc electrodes. Meanwhile, the NMI/NMIH buffer additive can accelerate the dissolution/deposition process of MnO /Mn on the cathode, leading to enhanced cycling capacity.

摘要

水锌金属电池因其高安全性和低成本的突出优点而受到广泛关注。然而,锌在水性电解质中的内在热力学不稳定性不可避免地导致析氢,而界面上生成的 OH 会极大地加剧死锌和枝晶的形成。在此,通过 N-甲基咪唑(NMI)添加剂提出了一种动态界面 pH 缓冲策略,以实时去除锌/电解质界面处的有害 OH,从而从根本上消除副产物的积累。电化学石英晶体微天平和分子动力学模拟结果表明,存在由 NMI 和质子化 NMI(NMIH )组装的界面吸收层,其充当质子不断补充界面的离子泵。此外,还开发了一种基于微电极技术的具有微尺寸空间分辨率的原位界面 pH 检测方法来探测扩散层中的 pH 演变,证实了含 NMI 电解液中稳定的界面化学环境。因此,在 NMI 的存在下,锌电极实现了 4.2 Ah cm 的优异累积电镀容量和 99.74%的超高库仑效率。同时,NMI/NMIH 缓冲添加剂可以加速阴极上 MnO/Mn 的溶解/沉积过程,从而提高循环容量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验