Suppr超能文献

一种用于相关个体的群体 GWAS 队列的快速连锁分析方法。

A fast linkage method for population GWAS cohorts with related individuals.

机构信息

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada.

出版信息

Genet Epidemiol. 2023 Apr;47(3):231-248. doi: 10.1002/gepi.22516. Epub 2023 Feb 5.

Abstract

Linkage analysis, a class of methods for detecting co-segregation of genomic segments and traits in families, was used to map disease-causing genes for decades before genotyping arrays and dense SNP genotyping enabled genome-wide association studies in population samples. Population samples often contain related individuals, but the segregation of alleles within families is rarely used because traditional linkage methods are computationally inefficient for larger datasets. Here, we describe Population Linkage, a novel application of Haseman-Elston regression as a method of moments estimator of variance components and their standard errors. We achieve additional computational efficiency by using modern methods for detection of IBD segments and variance component estimation, efficient preprocessing of input data, and minimizing redundant numerical calculations. We also refined variance component models to account for the biases in population-scale methods for IBD segment detection. We ran Population Linkage on four blood lipid traits in over 70,000 individuals from the HUNT and SardiNIA studies, successfully detecting 25 known genetic signals. One notable linkage signal that appeared in both was for low-density lipoprotein (LDL) cholesterol levels in the region near the gene APOE (LOD = 29.3, variance explained = 4.1%). This is the region where the missense variants rs7412 and rs429358, which together make up the ε2, ε3, and ε4 alleles each account for 2.4% and 0.8% of variation in circulating LDL cholesterol. Our results show the potential for linkage analysis and other large-scale applications of method of moments variance components estimation.

摘要

连锁分析是一类用于检测家族中基因组片段和特征共分离的方法,在基因分型阵列和密集 SNP 基因分型使全基因组关联研究能够在人群样本中进行之前,已经被用于定位致病基因数十年。人群样本通常包含相关个体,但由于传统的连锁方法对于更大的数据集在计算上效率低下,因此很少使用家庭内等位基因的分离。在这里,我们描述了 Population Linkage,这是一种新的 Haseman-Elston 回归应用,作为方差分量及其标准误差的矩估计方法。我们通过使用现代方法检测 IBD 片段和方差分量估计、有效预处理输入数据以及最小化冗余数值计算,实现了额外的计算效率。我们还改进了方差分量模型,以考虑人群规模 IBD 片段检测方法中的偏差。我们在来自 HUNT 和 SardiNIA 研究的超过 70,000 个人的四个血脂特征上运行了 Population Linkage,成功检测到了 25 个已知的遗传信号。一个在两个研究中都出现的显著连锁信号是 APOE 基因附近区域的低密度脂蛋白 (LDL) 胆固醇水平(LOD = 29.3,解释方差 = 4.1%)。这是错义变体 rs7412 和 rs429358 所在的区域,它们共同构成了 ε2、ε3 和 ε4 等位基因,分别占循环 LDL 胆固醇变异的 2.4%和 0.8%。我们的结果表明了连锁分析和其他矩法方差分量估计的大规模应用的潜力。

相似文献

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验