Suppr超能文献

基于注意力深度学习网络的多组学整合方法用于生物医学数据分类

Multi-omics integration method based on attention deep learning network for biomedical data classification.

作者信息

Gong Ping, Cheng Lei, Zhang Zhiyuan, Meng Ao, Li Enshuo, Chen Jie, Zhang Longzhen

机构信息

School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China.

School of Medical Imaging, Xuzhou Medical University, Xuzhou, CN, China.

出版信息

Comput Methods Programs Biomed. 2023 Apr;231:107377. doi: 10.1016/j.cmpb.2023.107377. Epub 2023 Jan 27.

Abstract

BACKGROUND AND OBJECTIVE

Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics.

METHODS

We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction.

RESULTS

We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets.

CONCLUSIONS

MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.

摘要

背景与目的

整合多组学数据以全面分析人类疾病中的生物过程已成为生物信息学中最具挑战性的任务之一。深度学习(DL)算法最近已成为最有前途的多组学数据整合分析方法之一。然而,现有的基于DL的研究几乎都是在输入数据空间或学习到的特征空间中通过拼接来整合多组学数据,而忽略了患者与组学之间的相关性。

方法

我们提出了一种新颖的多组学整合方法,称为多组学注意力深度学习网络(MOADLN),用于生物医学数据分类。首先,对于每种类型的组学数据,我们使用三个全连接层和自注意力机制进行降维,并分别构建患者之间的相关性。然后,我们应用从自注意力学习到的特征向量来生成初始类别标签。其次,对于每个组学数据预测的初始标签,我们使用有效的多组学相关性发现网络(MOCDN)在标签空间中学习跨组学相关性。最后,我们使用softmax分类器进行标签预测。

结果

我们证明,在包含mRNA表达数据、DNA甲基化数据和miRNA表达数据的两个数据集上,我们的方法优于几种现有最先进的方法。此外,我们通过MOADLN识别了相关疾病的关键生物标志物,并且MOADLN的通用性也在KIRP和KIRC数据集中得到了证明。

结论

MOADLN联合探索组学内部患者之间的相关性以及标签空间中跨组学的相关性,这是一种基于DL的有效的生物医学数据分类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验