Suppr超能文献

ResSAT:使用交互式点变压器增强从苏木精和伊红染色组织学图像进行的空间转录组学预测。

ResSAT: Enhancing Spatial Transcriptomics Prediction from H&E- Stained Histology Images with Interactive Spot Transformer.

作者信息

Liu Anqi, Zhao Yue, Shen Hui, Ding Zhengming, Deng Hong-Wen

机构信息

Tulane University.

出版信息

Res Sq. 2024 Aug 9:rs.3.rs-4707959. doi: 10.21203/rs.3.rs-4707959/v1.

Abstract

Spatial transcriptomics (ST) revolutionizes RNA quantification with high spatial resolution. Hematoxylin and eosin (H&E) images, the gold standard in medical diagnosis, offer insights into tissue structure, correlating with gene expression patterns. Current methods for predicting spatial gene expression from H&E images often overlook spatial relationships. We introduce ResSAT (Residual networks - Self-Attention Transformer), a framework generating spatially resolved gene expression profiles from H&E images by capturing tissue structures and using a self-attention transformer to enhance prediction.Benchmarking on 10× Visium datasets, ResSAT significantly outperformed existing methods, promising reduced ST profiling costs and rapid acquisition of numerous profiles.

摘要

空间转录组学(ST)以高空间分辨率彻底改变了RNA定量分析。苏木精和伊红(H&E)图像作为医学诊断的金标准,能提供有关组织结构的见解,并与基因表达模式相关联。目前从H&E图像预测空间基因表达的方法往往忽略了空间关系。我们引入了ResSAT(残差网络-自注意力变换器),这是一个通过捕捉组织结构并使用自注意力变换器来增强预测,从而从H&E图像生成空间分辨基因表达谱的框架。在10× Visium数据集上进行基准测试时,ResSAT显著优于现有方法,有望降低空间转录组分析成本并快速获取大量图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efe0/11326376/27e91987b194/nihpp-rs4707959v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验