Liu Anqi, Zhao Yue, Shen Hui, Ding Zhengming, Deng Hong-Wen
Tulane University.
Res Sq. 2024 Aug 9:rs.3.rs-4707959. doi: 10.21203/rs.3.rs-4707959/v1.
Spatial transcriptomics (ST) revolutionizes RNA quantification with high spatial resolution. Hematoxylin and eosin (H&E) images, the gold standard in medical diagnosis, offer insights into tissue structure, correlating with gene expression patterns. Current methods for predicting spatial gene expression from H&E images often overlook spatial relationships. We introduce ResSAT (Residual networks - Self-Attention Transformer), a framework generating spatially resolved gene expression profiles from H&E images by capturing tissue structures and using a self-attention transformer to enhance prediction.Benchmarking on 10× Visium datasets, ResSAT significantly outperformed existing methods, promising reduced ST profiling costs and rapid acquisition of numerous profiles.
空间转录组学(ST)以高空间分辨率彻底改变了RNA定量分析。苏木精和伊红(H&E)图像作为医学诊断的金标准,能提供有关组织结构的见解,并与基因表达模式相关联。目前从H&E图像预测空间基因表达的方法往往忽略了空间关系。我们引入了ResSAT(残差网络-自注意力变换器),这是一个通过捕捉组织结构并使用自注意力变换器来增强预测,从而从H&E图像生成空间分辨基因表达谱的框架。在10× Visium数据集上进行基准测试时,ResSAT显著优于现有方法,有望降低空间转录组分析成本并快速获取大量图谱。