Suppr超能文献

基于原型引导的多尺度领域自适应阿尔茨海默病检测。

Prototype-guided multi-scale domain adaptation for Alzheimer's disease detection.

机构信息

College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.

College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.

出版信息

Comput Biol Med. 2023 Mar;154:106570. doi: 10.1016/j.compbiomed.2023.106570. Epub 2023 Jan 23.

Abstract

Alzheimer's disease (AD) is the most common form of dementia and there is no effective treatment currently. Using artificial intelligence technology to assist the diagnosis and intervention as early as possible is of great significance to delay the development of AD. Structural Magnetic Resonance Imaging (sMRI) has shown great practical values on computer-aided AD diagnosis. Affected by data from different sources or acquisition domains in realistic scenarios, MRI data often suffer from domain shift problem. In this paper, we propose a deep Prototype-Guided Multi-Scale Domain Adaptation (PMDA) framework to handle MRI data with domain shift problem, and realize automatic auxiliary diagnosis of AD, Mild Cognitive Impairment (MCI) and Cognitively Normal (CN). PMDA is composed of three modules: (1) MRI multi-scale feature extraction module combines the advantages of 3D convolution and self-attention to effectively extract multi-scale features in high-dimensional space, (2) Prototype Maximum Density Divergence (Pro-MDD) module adopts prototype learning to constrain the feature outlier samples in a mini-batch when MDD is used to align source domain and target domain, and (3) Adversarial Domain Adaptation module is applied to achieve global feature alignment of the source domain and target domain and co-training two distinctive discriminators to mitigate the over-fitting issue. Experiments have been performed on 3T and 1.5T sMRI with domain shift in ADNI dataset. The experimental results demonstrated that the proposed framework PMDA outperforms supervised learning methods and several state-of-the-art domain adaptation methods and achieves a superior accuracy of 92.11%, 76.01% and 82.37% on AD vs. CN, AD vs. MCI, and MCI vs. CN tasks, respectively.

摘要

阿尔茨海默病(AD)是最常见的痴呆症形式,目前尚无有效的治疗方法。利用人工智能技术尽早协助诊断和干预,对于延缓 AD 的发展具有重要意义。结构磁共振成像(sMRI)在计算机辅助 AD 诊断中具有很大的实用价值。受现实场景中不同来源或采集领域数据的影响,MRI 数据通常会受到域转移问题的影响。在本文中,我们提出了一种深度原型指导多尺度域自适应(PMDA)框架来处理具有域转移问题的 MRI 数据,并实现 AD、轻度认知障碍(MCI)和认知正常(CN)的自动辅助诊断。PMDA 由三个模块组成:(1)MRI 多尺度特征提取模块结合 3D 卷积和自注意力的优势,有效提取高维空间中的多尺度特征;(2)原型最大密度散度(Pro-MDD)模块采用原型学习,在使用 MDD 对齐源域和目标域时约束小批量中特征异常样本;(3)对抗性域自适应模块用于实现源域和目标域的全局特征对齐,并共同训练两个有区别的鉴别器以减轻过拟合问题。在 ADNI 数据集具有域转移的 3T 和 1.5T sMRI 上进行了实验。实验结果表明,所提出的框架 PMDA 优于监督学习方法和几种最先进的域自适应方法,在 AD 与 CN、AD 与 MCI 和 MCI 与 CN 任务上分别达到了 92.11%、76.01%和 82.37%的优异准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验