Suppr超能文献

用于阿尔茨海默病诊断的多切片注意力融合和多视图个性化融合轻量化网络。

A multi-slice attention fusion and multi-view personalized fusion lightweight network for Alzheimer's disease diagnosis.

机构信息

College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China.

出版信息

BMC Med Imaging. 2024 Sep 27;24(1):258. doi: 10.1186/s12880-024-01429-8.

Abstract

OBJECTIVE

Alzheimer's disease (AD) is a type of neurological illness that significantly impacts individuals' daily lives. In the intelligent diagnosis of AD, 3D networks require larger computational resources and storage space for training the models, leading to increased model complexity and training time. On the other hand, 2D slices analysis may overlook the 3D structural information of MRI and can result in information loss.

APPROACH

We propose a multi-slice attention fusion and multi-view personalized fusion lightweight network for automated AD diagnosis. It incorporates a multi-branch lightweight backbone to extract features from sagittal, axial, and coronal view of MRI, respectively. In addition, we introduce a novel multi-slice attention fusion module, which utilizes a combination of global and local channel attention mechanism to ensure consistent classification across multiple slices. Additionally, a multi-view personalized fusion module is tailored to assign appropriate weights to the three views, taking into account the varying significance of each view in achieving accurate classification results. To enhance the performance of the multi-view personalized fusion module, we utilize a label consistency loss to guide the model's learning process. This encourages the acquisition of more consistent and stable representations across all three views.

MAIN RESULTS

The suggested strategy is efficient in lowering the number of parameters and FLOPs, with only 3.75M and 4.45G respectively, and accuracy improved by 10.5% to 14% in three tasks. Moreover, in the classification tasks of AD vs. CN, AD vs. MCI and MCI vs. CN, the accuracy of the proposed method is 95.63%, 86.88% and 85.00%, respectively, which is superior to the existing methods.

CONCLUSIONS

The results show that the proposed approach not only excels in resource utilization, but also significantly outperforms the four comparison methods in terms of accuracy and sensitivity, particularly in detecting early-stage AD lesions. It can precisely capture and accurately identify subtle brain lesions, providing crucial technical support for early intervention and treatment.

摘要

目的

阿尔茨海默病(AD)是一种严重影响个体日常生活的神经疾病。在 AD 的智能诊断中,3D 网络需要更大的计算资源和存储空间来训练模型,从而导致模型复杂性和训练时间增加。另一方面,2D 切片分析可能会忽略 MRI 的 3D 结构信息,并导致信息丢失。

方法

我们提出了一种多切片注意融合和多视图个性化融合的轻量级网络,用于自动 AD 诊断。它结合了一个多分支轻量级骨干网络,分别从 MRI 的矢状位、轴位和冠状位提取特征。此外,我们引入了一种新颖的多切片注意融合模块,该模块利用全局和局部通道注意力机制的组合,确保在多个切片上进行一致的分类。此外,多视图个性化融合模块旨在为三个视图分配适当的权重,考虑到每个视图在实现准确分类结果方面的重要性。为了提高多视图个性化融合模块的性能,我们利用标签一致性损失来指导模型的学习过程。这鼓励模型在所有三个视图中获得更一致和稳定的表示。

主要结果

所提出的策略在降低参数数量和 FLOPs 方面非常有效,参数数量和 FLOPs 分别仅为 3.75M 和 4.45G,在三个任务中精度提高了 10.5%至 14%。此外,在 AD 与 CN、AD 与 MCI 和 MCI 与 CN 的分类任务中,所提出方法的准确率分别为 95.63%、86.88%和 85.00%,优于现有方法。

结论

结果表明,所提出的方法不仅在资源利用方面表现出色,而且在准确性和敏感性方面明显优于四种比较方法,特别是在检测早期 AD 病变方面。它可以精确地捕捉和准确地识别细微的脑损伤,为早期干预和治疗提供了重要的技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8747/11437796/21a649ae4085/12880_2024_1429_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验