Suppr超能文献

基于多模态域适应的阿尔茨海默病预测

Prediction of Alzheimer's Disease Based on Multi-Modal Domain Adaptation.

作者信息

Fu Binbin, Shen Changsong, Liao Shuzu, Wu Fangxiang, Liao Bo

机构信息

School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.

Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China.

出版信息

Brain Sci. 2025 Jun 7;15(6):618. doi: 10.3390/brainsci15060618.

Abstract

Structural magnetic resonance imaging (MRI) and 18-fluoro-deoxy-glucose positron emission tomography (PET) reveal the structural and functional information of the brain from different dimensions, demonstrating considerable clinical and practical value in the computer-aided diagnosis of Alzheimer's disease (AD). However, the structure and semantics of different modal data are different, and the distribution between different datasets is prone to the problem of domain shift. Most of the existing methods start from the single-modal data and assume that different datasets meet the same distribution, but they fail to fully consider the complementary information between the multi-modal data and fail to effectively solve the problem of domain distribution difference. In this study, we propose a multi-modal deep domain adaptation (MM-DDA) model that integrates MRI and PET modal data, which aims to maximize the utilization of the complementarity of the multi-modal data and narrow the differences in domain distribution to boost the accuracy of AD classification. Specifically, MM-DDA comprises three primary modules: (1) the feature encoding module, which employs convolutional neural networks (CNNs) to capture detailed and abstract feature representations from MRI and PET images; (2) the multi-head attention feature fusion module, which is used to fuse MRI and PET features, that is, to capture rich semantic information between modes from multiple angles by dynamically adjusting weights, so as to achieve more flexible and efficient feature fusion; and (3) the domain transfer module, which reduces the distributional discrepancies between the source and target domains by employing adversarial learning training. We selected 639 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and considered two transfer learning settings. In ADNI1→ADNI2, the accuracies of the four experimental groups, AD vs. CN, pMCI vs. sMCI, AD vs. MCI, and MCI vs. CN, reached 92.40%, 81.81%, 81.13%, and 85.45%, respectively. In ADNI2→ADNI1, the accuracies of the four experimental groups, AD vs. CN, pMCI vs. sMCI, AD vs. MCI, and MCI vs. CN, reached 94.73%, 81.48%, 85.48%, and 81.69%, respectively. MM-DDA is compared with other deep learning methods on two kinds of transfer learning, and the performance comparison results confirmed the superiority of the proposed method in AD prediction tasks.

摘要

结构磁共振成像(MRI)和18氟脱氧葡萄糖正电子发射断层扫描(PET)从不同维度揭示了大脑的结构和功能信息,在阿尔茨海默病(AD)的计算机辅助诊断中显示出相当大的临床和实用价值。然而,不同模态数据的结构和语义不同,不同数据集之间的分布容易出现域转移问题。现有的大多数方法从单模态数据出发,假设不同数据集满足相同分布,但它们没有充分考虑多模态数据之间的互补信息,也未能有效解决域分布差异问题。在本研究中,我们提出了一种集成MRI和PET模态数据的多模态深度域适应(MM-DDA)模型,旨在最大化利用多模态数据的互补性,缩小域分布差异,以提高AD分类的准确性。具体来说,MM-DDA包括三个主要模块:(1)特征编码模块,它采用卷积神经网络(CNN)从MRI和PET图像中捕获详细和抽象的特征表示;(2)多头注意力特征融合模块,用于融合MRI和PET特征,即通过动态调整权重从多个角度捕获模态间丰富的语义信息,从而实现更灵活高效的特征融合;(3)域转移模块,它通过采用对抗学习训练来减少源域和目标域之间的分布差异。我们从阿尔茨海默病神经成像倡议(ADNI)中选取了639名受试者,并考虑了两种迁移学习设置。在ADNI1→ADNI2中,AD与CN、pMCI与sMCI、AD与MCI、MCI与CN这四个实验组的准确率分别达到92.40%、81.81%、81.13%和85.45%。在ADNI2→ADNI1中,AD与CN、pMCI与sMCI、AD与MCI、MCI与CN这四个实验组的准确率分别达到94.73%、81.48%、85.48%和81.69%。在两种迁移学习中,将MM-DDA与其他深度学习方法进行了比较,性能比较结果证实了所提方法在AD预测任务中的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce65/12190310/8c84d37f5e47/brainsci-15-00618-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验