文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微生物组和空间分辨代谢组学分析揭示了肠道阿克曼氏菌通过与肿瘤内微生物群的相互作用和重塑肿瘤代谢在小鼠中的抗癌作用。

Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice.

机构信息

Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.

Department of Emergency Medicine, Tongji University School of Medicine, Shanghai, China.

出版信息

Gut Microbes. 2023 Jan-Dec;15(1):2166700. doi: 10.1080/19490976.2023.2166700.


DOI:10.1080/19490976.2023.2166700
PMID:36740846
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9904296/
Abstract

Although gut microbiota has been linked to cancer, little is known about the crosstalk between gut- and intratumoral-microbiomes. The goal of this study was to determine whether gut Akkermansia muciniphila (Akk) is involved in the regulation of intratumoral microbiome and metabolic contexture, leading to an anticancer effect on lung cancer. We evaluated the effects of gut endogenous or gavaged exogenous Akk on the tumorigenesis using the Lewis lung cancer mouse model. Feces, blood, and tumor tissue samples were collected for 16S rDNA sequencing. We then conducted spatially resolved metabolomics profiling to discover cancer metabolites in situ directly and to characterize the overall Akk-regulated metabolic features, followed by the correlation analysis of intratumoral bacteria with metabolic network. Our results showed that both endogenous and exogenous gavaged Akk significantly inhibited tumorigenesis. Moreover, we detected increased Akk abundance in blood circulation or tumor tissue by 16S rDNA sequencing in the Akk gavaged mice, compared with the control mice. Of great interest, gavaged Akk may migrate into tumor tissue and influence the composition of intratumoral microbiome. Spatially resolved metabolomics analysis revealed that the gut-derived Akk was able to regulate tumor metabolic pathways, from metabolites to enzymes. Finally, our study identified a significant correlation between the gut Akk-regulated intratumoral bacteria and metabolic network. Together, gut-derived Akk may migrate into blood circulation, and subsequently colonize into lung cancer tissue, which contributes to the suppression of tumorigenesis by influencing tumoral symbiotic microbiome and reprogramming tumoral metabolism, although more studies are needed.

摘要

虽然肠道微生物群与癌症有关,但人们对肠道和肿瘤内微生物群之间的串扰知之甚少。本研究的目的是确定肠道阿克曼氏菌(Akk)是否参与调节肿瘤内微生物群和代谢结构,从而对肺癌产生抗癌作用。我们使用 Lewis 肺癌小鼠模型评估了肠道内源性或灌胃外源性 Akk 对肿瘤发生的影响。收集粪便、血液和肿瘤组织样本进行 16S rDNA 测序。然后,我们进行了空间分辨代谢组学分析,直接发现癌症代谢物,并对整体 Akk 调节的代谢特征进行了特征描述,随后对肿瘤内细菌与代谢网络进行了相关性分析。我们的结果表明,内源性和外源性灌胃 Akk 均能显著抑制肿瘤发生。此外,与对照组小鼠相比,灌胃 Akk 小鼠的血液或肿瘤组织中 16S rDNA 测序检测到 Akk 丰度增加。有趣的是,灌胃 Akk 可能迁移到肿瘤组织中,并影响肿瘤内微生物群的组成。空间分辨代谢组学分析显示,肠道来源的 Akk 能够调节肿瘤代谢途径,从代谢物到酶。最后,我们的研究确定了肠道 Akk 调节的肿瘤内细菌与代谢网络之间存在显著相关性。总之,肠道来源的 Akk 可能迁移到血液循环中,随后定植于肺癌组织中,通过影响肿瘤共生微生物群和重塑肿瘤代谢来抑制肿瘤发生,但还需要更多的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/b7b189a92daf/KGMI_A_2166700_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/5cfdaaec5035/KGMI_A_2166700_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/2e9fa87ca538/KGMI_A_2166700_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/93d4b78c38c6/KGMI_A_2166700_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/3b752ba558b1/KGMI_A_2166700_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/b92f5d3a5e60/KGMI_A_2166700_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/365e93c07d23/KGMI_A_2166700_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/77c736d7bec7/KGMI_A_2166700_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/d65b654a9361/KGMI_A_2166700_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/5b0b6b7722a6/KGMI_A_2166700_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/b7b189a92daf/KGMI_A_2166700_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/5cfdaaec5035/KGMI_A_2166700_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/2e9fa87ca538/KGMI_A_2166700_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/93d4b78c38c6/KGMI_A_2166700_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/3b752ba558b1/KGMI_A_2166700_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/b92f5d3a5e60/KGMI_A_2166700_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/365e93c07d23/KGMI_A_2166700_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/77c736d7bec7/KGMI_A_2166700_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/d65b654a9361/KGMI_A_2166700_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/5b0b6b7722a6/KGMI_A_2166700_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/9904296/b7b189a92daf/KGMI_A_2166700_F0010_OC.jpg

相似文献

[1]
Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice.

Gut Microbes. 2023

[2]
A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress-induced depressive-like behavior in mice by regulating gut microbiota and metabolites.

Appl Microbiol Biotechnol. 2021-11

[3]
Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice.

FEMS Microbiol Lett. 2019-7-1

[4]
Oral administration of elevates systemic antiaging and anticancer metabolites.

Aging (Albany NY). 2021-3-2

[5]
Hypericum perforatum L. attenuates depression by regulating Akkermansia muciniphila, tryptophan metabolism and NFκB-NLRP2-Caspase1-IL1β pathway.

Phytomedicine. 2024-9

[6]
Intestinal Akkermansia muciniphila is Beneficial to Functional Recovery Following Ischemic Stroke.

J Neuroimmune Pharmacol. 2024-8-14

[7]
and its outer protein Amuc_1100 regulates tryptophan metabolism in colitis.

Food Funct. 2021-10-19

[8]
Landscape of tumoral ecosystem for enhanced anti-PD-1 immunotherapy by gut Akkermansia muciniphila.

Cell Rep. 2024-6-25

[9]
improves gastric cancer treatment by modulating the immune microenvironment.

Future Microbiol. 2024

[10]
Gastrointestinal Self-Adaptive and Nutrient Self-Sufficient -Gelatin Porous Microgels for Synergistic Therapy of Ulcerative Colitis.

ACS Nano. 2024-10-1

引用本文的文献

[1]
The gut microbiome in lung cancer: from pathogenesis to precision therapy.

Front Microbiol. 2025-8-20

[2]
Harnessing intratumoral microbiota: new horizons in immune microenvironment and immunotherapy.

J Transl Med. 2025-8-12

[3]
Exploring fecal microbiota signatures associated with immune response and antibiotic impact in NSCLC: insights from metagenomic and machine learning approaches.

Front Cell Infect Microbiol. 2025-7-28

[4]
Advancements in understanding tumor-resident bacteria and their application in cancer therapy.

Mil Med Res. 2025-7-25

[5]
The tumor microbiome in cancer progression: mechanisms and therapeutic potential.

Mol Cancer. 2025-7-15

[6]
From Microbial Homeostasis to Systemic Pathogenesis: A Narrative Review on Gut Flora's Role in Neuropsychiatric, Metabolic, and Cancer Disorders.

J Inflamm Res. 2025-7-5

[7]
The Role of Akkermansia muciniphila in Disease Regulation.

Probiotics Antimicrob Proteins. 2025-7-9

[8]
Driving innovations in cancer research through spatial metabolomics: a bibliometric review of trends and hotspot.

Front Immunol. 2025-6-10

[9]
Airway microbiota associated D-phenylalanine promotes non-small cell lung cancer metastasis through epithelial mesenchymal transition.

J Transl Med. 2025-6-17

[10]
Crosstalk between metabolic reprogramming and microbiota: implications for cancer progression and novel therapeutic opportunities.

Front Immunol. 2025-5-20

本文引用的文献

[1]
Microbiota in Tumors: From Understanding to Application.

Adv Sci (Weinh). 2022-7

[2]
Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer.

Cell. 2022-4-14

[3]
The evolution and competitive strategies of in gut.

Gut Microbes. 2022

[4]
Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer.

Nat Med. 2022-2

[5]
Loss of DSTYK activates Wnt/β-catenin signaling and glycolysis in lung adenocarcinoma.

Cell Death Dis. 2021-12-1

[6]
Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors.

Cell Host Microbe. 2021-10-13

[7]
Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy.

Cancer Cell. 2021-9-13

[8]
Mapping Metabolic Networks in the Brain by Ambient Mass Spectrometry Imaging and Metabolomics.

Anal Chem. 2021-5-4

[9]
The microbiome and human cancer.

Science. 2021-3-26

[10]
Systemic Immunoregulatory Consequences of Gut Commensal Translocation.

Trends Immunol. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索