Suppr超能文献

屈光发育I:正视化过程中的生物测量变化。

Refractive development I: Biometric changes during emmetropisation.

作者信息

Rozema Jos J

机构信息

Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.

Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.

出版信息

Ophthalmic Physiol Opt. 2023 May;43(3):347-367. doi: 10.1111/opo.13094. Epub 2023 Feb 5.

Abstract

PURPOSE

Although there are many reports on ocular growth, these data are often fragmented into separate parameters or for limited age ranges. This work intends to create an overview of normal eye growth (i.e., in absence of myopisation) for the period before birth until 18 years of age.

METHODS

The data for this analysis were taken from a search of six literature databases using keywords such as "[Parameter] & [age group]", with [Parameter] the ocular parameter under study and [age group] an indication of age. This yielded 34,409 references that, after screening of title, abstract and text, left 294 references with usable data. Where possible, additional parameters were calculated, such as the Bennett crystalline lens power, whole eye power and axial power.

RESULTS

There were 3422 average values for 17 parameters, calculated over a combined total of 679,398 individually measured or calculated values. The age-related change in refractive error was best fitted by a sum of four exponentials (r  = 0.58), while all other biometric parameters could be fitted well by a sum of two exponentials and a linear term ('bi-exponential function'; r range: 0.64-0.99). The first exponential of the bi-exponential fits typically reached 95% of its end value before 18 months, suggesting that these reached genetically pre-programmed passive growth. The second exponentials reached this point between 4 years of age for the anterior curvature and well past adulthood for most lenticular dimensions, suggesting that this part represents the active control underlying emmetropisation. The ocular components each have different growth rates, but growth rate changes occur simultaneously at first and then act independently after birth.

CONCLUSIONS

Most biometric parameters grow according to a bi-exponential pattern associated with passive and actively modulated eye growth. This may form an interesting reference to understand myopisation.

摘要

目的

尽管有许多关于眼球生长的报告,但这些数据往往分散在不同的参数中或仅针对有限的年龄范围。本研究旨在概述出生前至18岁期间正常眼球生长(即未发生近视的情况)。

方法

本分析的数据来自对六个文献数据库的检索,使用的关键词如“[参数] & [年龄组]”,其中[参数]为所研究的眼部参数,[年龄组]表示年龄。这产生了34409篇参考文献,在对标题、摘要和正文进行筛选后,留下了294篇有可用数据的参考文献。在可能的情况下,计算了其他参数,如贝内特晶状体屈光度、全眼屈光度和眼轴屈光度。

结果

17个参数共有3422个平均值,这些平均值是基于总共679398个单独测量或计算的值计算得出的。屈光不正的年龄相关变化最适合用四个指数函数之和来拟合(r = 0.58),而所有其他生物测量参数都可以用两个指数函数和一个线性项之和(“双指数函数”;r范围:0.64 - 0.99)很好地拟合。双指数拟合的第一个指数通常在18个月前达到其终值的95%,这表明这些达到了遗传预编程的被动生长。第二个指数在4岁时对于前曲率达到这一点,而对于大多数晶状体维度则在成年后很久才达到,这表明这部分代表了正视化过程中的主动控制。眼部各组成部分具有不同的生长速率,但生长速率变化在出生后首先同时发生,然后独立起作用。

结论

大多数生物测量参数按照与被动和主动调节的眼球生长相关的双指数模式生长。这可能为理解近视形成提供一个有趣的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验