Suppr超能文献

作为生物人工心脏组成部分的生物泵的最新进展。

Recent advances in biological pumps as a building block for bioartificial hearts.

作者信息

Brimmer Sunita, Ji Pengfei, Birla Aditya K, Keswani Sundeep G, Caldarone Christopher A, Birla Ravi K

机构信息

Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, United States.

Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, United States.

出版信息

Front Bioeng Biotechnol. 2023 Jan 20;11:1061622. doi: 10.3389/fbioe.2023.1061622. eCollection 2023.

Abstract

The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex environment during controlled culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.

摘要

生物泵领域是心脏组织工程的一个子集,专注于开发旨在产生腔内压力的管状移植物。在最简单的实施方案中,生物泵是外表面带有收缩性心肌细胞的管状移植物。生物泵的基本原理是从平面三维心脏贴片向功能性生物泵转变,朝着完整的生物人工心脏迈进。生物泵还可作为独立装置应用,例如用于支持儿科患者的Fontan循环。近年来,随着创新制造技术的出现,生物泵领域取得了很大进展。示例包括使用细胞片工程、自组织心肌、生物打印和用于血管化的生物腔室。已经对几种材料进行了生物泵测试,包括啮齿动物切除的主动脉段、I型胶原蛋白和纤维蛋白水凝胶等。已经测试了多种生物反应器来调节生物泵并在受控培养期间复制复杂环境。本文的目的是概述生物泵领域,概述过去几年该领域的进展。特别是,将介绍不同的制造方法、用于管状移植物的生物材料平台和生物反应器示例。此外,我们概述了生物泵领域向前发展需要克服的一些挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7045/9895798/6ad4131c4f0a/fbioe-11-1061622-g001.jpg

相似文献

1
Recent advances in biological pumps as a building block for bioartificial hearts.
Front Bioeng Biotechnol. 2023 Jan 20;11:1061622. doi: 10.3389/fbioe.2023.1061622. eCollection 2023.
2
Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review.
Biomaterials. 2022 Jan;280:121298. doi: 10.1016/j.biomaterials.2021.121298. Epub 2021 Nov 30.
3
Tissue engineering solutions to replace contractile function during pediatric heart surgery.
Tissue Cell. 2020 Dec;67:101452. doi: 10.1016/j.tice.2020.101452. Epub 2020 Oct 23.
4
Bioartificial grafts for transmural myocardial restoration: a new cardiovascular tissue culture concept.
Eur J Cardiothorac Surg. 2003 Dec;24(6):906-11. doi: 10.1016/s1010-7940(03)00577-3.
5
3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
Int J Mol Sci. 2021 Apr 12;22(8):3971. doi: 10.3390/ijms22083971.
6
A methodological nine-step process to bioengineer heart muscle tissue.
Tissue Cell. 2020 Dec;67:101425. doi: 10.1016/j.tice.2020.101425. Epub 2020 Aug 15.
7
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing.
Nat Rev Cardiol. 2022 Feb;19(2):83-99. doi: 10.1038/s41569-021-00603-7. Epub 2021 Aug 27.
8
Biomaterializing the promise of cardiac tissue engineering.
Biotechnol Adv. 2020 Sep-Oct;42:107353. doi: 10.1016/j.biotechadv.2019.02.009. Epub 2019 Feb 20.
9
In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid.
Circ Res. 2020 Jul 3;127(2):207-224. doi: 10.1161/CIRCRESAHA.119.316155. Epub 2020 Mar 31.
10
Establishing the Framework for Fabrication of a Bioartificial Heart.
ASAIO J. 2015 Jul-Aug;61(4):429-36. doi: 10.1097/MAT.0000000000000233.

本文引用的文献

1
Current state of the art in hypoplastic left heart syndrome.
Front Cardiovasc Med. 2022 Oct 28;9:878266. doi: 10.3389/fcvm.2022.878266. eCollection 2022.
2
Cardiac tissue engineering: Multiple approaches and potential applications.
Front Bioeng Biotechnol. 2022 Oct 3;10:980393. doi: 10.3389/fbioe.2022.980393. eCollection 2022.
3
Impact of Aortic Atresia After Fontan Operation in Patients With Hypoplastic Left Heart Syndrome.
Ann Thorac Surg. 2023 Jul;116(1):95-102. doi: 10.1016/j.athoracsur.2022.09.018. Epub 2022 Sep 21.
4
Challenges and opportunities for the next generation of cardiovascular tissue engineering.
Nat Methods. 2022 Sep;19(9):1064-1071. doi: 10.1038/s41592-022-01591-3. Epub 2022 Sep 5.
5
Early History and Evolution of Surgical Therapies for HLHS.
World J Pediatr Congenit Heart Surg. 2022 Sep;13(5):556-558. doi: 10.1177/21501351221115633.
6
Artificial Scaffolds in Cardiac Tissue Engineering.
Life (Basel). 2022 Jul 25;12(8):1117. doi: 10.3390/life12081117.
7
Fontan failure: phenotypes, evaluation, management, and future directions.
Cardiol Young. 2022 Oct;32(10):1554-1563. doi: 10.1017/S1047951122001433. Epub 2022 Jun 22.
8
A Systematic Review of Adherence to Immunosuppression among Pediatric Heart Transplant Patients.
J Cardiovasc Dev Dis. 2022 May 23;9(5):165. doi: 10.3390/jcdd9050165.
9
Current immunosuppression strategies in pediatric heart transplant.
Immunotherapy. 2022 May 4. doi: 10.2217/imt-2021-0352.
10
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances.
Nat Biomed Eng. 2022 Apr;6(4):327-338. doi: 10.1038/s41551-022-00885-3. Epub 2022 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验