Suppr超能文献

通过生成对抗网络实现可控医学图像生成

Controllable Medical Image Generation via Generative Adversarial Networks.

作者信息

Ren Zhihang, Yu Stella X, Whitney David

机构信息

UC Berkeley / ICSI; Berkeley, California, USA.

出版信息

IS&T Int Symp Electron Imaging. 2021;33. doi: 10.2352/issn.2470-1173.2021.11.hvei-112.

Abstract

Radiologists and pathologists frequently make highly consequential perceptual decisions. For example, visually searching for a tumor and recognizing whether it is malignant can have a life-changing impact on a patient. Unfortunately, all human perceivers-even radiologists-have perceptual biases. Because human perceivers (medical doctors) will, for the foreseeable future, be the final judges of whether a tumor is malignant, understanding and mitigating human perceptual biases is important. While there has been research on perceptual biases in medical image perception tasks, the stimuli used for these studies were highly artificial and often critiqued. Realistic stimuli have not been used because it has not been possible to generate or control them for psychophysical experiments. Here, we propose to use Generative Adversarial Networks (GAN) to create vivid and realistic medical image stimuli that can be used in psychophysical and computer vision studies of medical image perception. Our model can generate tumor-like stimuli with specified shapes and realistic textures in a controlled manner. Various experiments showed the authenticity of our GAN-generated stimuli and the controllability of our model.

摘要

放射科医生和病理学家经常做出具有重大影响的感知决策。例如,通过视觉搜索肿瘤并识别其是否为恶性,可能会对患者的生活产生改变。不幸的是,所有人类感知者——甚至是放射科医生——都存在感知偏差。由于在可预见的未来,人类感知者(医生)将最终判断肿瘤是否为恶性,因此理解和减轻人类感知偏差非常重要。虽然已经有关于医学图像感知任务中感知偏差的研究,但这些研究使用的刺激非常人工化,且经常受到批评。尚未使用真实的刺激,因为无法为心理物理学实验生成或控制它们。在这里,我们建议使用生成对抗网络(GAN)来创建生动逼真的医学图像刺激,可用于医学图像感知的心理物理学和计算机视觉研究。我们的模型可以以可控的方式生成具有特定形状和逼真纹理的肿瘤样刺激。各种实验证明了我们的GAN生成刺激的真实性和模型的可控性。

相似文献

1
Controllable Medical Image Generation via Generative Adversarial Networks.通过生成对抗网络实现可控医学图像生成
IS&T Int Symp Electron Imaging. 2021;33. doi: 10.2352/issn.2470-1173.2021.11.hvei-112.
2
Controllable Medical Image Generation via GAN.通过生成对抗网络实现可控医学图像生成
J Percept Imaging. 2022 Jan;5:0005021-50215. doi: 10.2352/j.percept.imaging.2022.5.000502. Epub 2022 Mar 18.
3
Idiosyncratic biases in the perception of medical images.医学图像感知中的特质性偏差。
Front Psychol. 2022 Dec 19;13:1049831. doi: 10.3389/fpsyg.2022.1049831. eCollection 2022.
6
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.StackGAN++:基于堆叠生成对抗网络的逼真图像合成
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.
7
RankSRGAN: Super Resolution Generative Adversarial Networks With Learning to Rank.RankSRGAN:带有学习排序的超分辨率生成对抗网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7149-7166. doi: 10.1109/TPAMI.2021.3096327. Epub 2022 Sep 14.
8
Generative adversarial networks with decoder-encoder output noises.生成对抗网络与解码器编码器输出噪声。
Neural Netw. 2020 Jul;127:19-28. doi: 10.1016/j.neunet.2020.04.005. Epub 2020 Apr 9.
9
Generative Adversarial Networks in Medical Image Processing.生成对抗网络在医学图像处理中的应用。
Curr Pharm Des. 2021;27(15):1856-1868. doi: 10.2174/1381612826666201125110710.
10
A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL.基于生成对抗网络模型的实时医学超声模拟器
Proc Int Conf Image Proc. 2019 Sep;2019:4629-4633. doi: 10.1109/icip.2019.8803570. Epub 2019 Aug 26.

本文引用的文献

1
Preparing Medical Imaging Data for Machine Learning.医学影像数据的机器学习准备
Radiology. 2020 Apr;295(1):4-15. doi: 10.1148/radiol.2020192224. Epub 2020 Feb 18.
2
A Style-Based Generator Architecture for Generative Adversarial Networks.基于风格的生成对抗网络生成器架构。
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
5
Heuristics and Cognitive Error in Medical Imaging.医学影像学中的启发式和认知错误。
AJR Am J Roentgenol. 2018 May;210(5):1097-1105. doi: 10.2214/AJR.17.18907. Epub 2018 Mar 12.
7
TCIA: An information resource to enable open science.TCIA:一个助力开放科学的信息资源。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1282-5. doi: 10.1109/EMBC.2013.6609742.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验