Ren Zhihang, Yu Stella X, Whitney David
UC Berkeley / ICSI; Berkeley, California, USA.
IS&T Int Symp Electron Imaging. 2021;33. doi: 10.2352/issn.2470-1173.2021.11.hvei-112.
Radiologists and pathologists frequently make highly consequential perceptual decisions. For example, visually searching for a tumor and recognizing whether it is malignant can have a life-changing impact on a patient. Unfortunately, all human perceivers-even radiologists-have perceptual biases. Because human perceivers (medical doctors) will, for the foreseeable future, be the final judges of whether a tumor is malignant, understanding and mitigating human perceptual biases is important. While there has been research on perceptual biases in medical image perception tasks, the stimuli used for these studies were highly artificial and often critiqued. Realistic stimuli have not been used because it has not been possible to generate or control them for psychophysical experiments. Here, we propose to use Generative Adversarial Networks (GAN) to create vivid and realistic medical image stimuli that can be used in psychophysical and computer vision studies of medical image perception. Our model can generate tumor-like stimuli with specified shapes and realistic textures in a controlled manner. Various experiments showed the authenticity of our GAN-generated stimuli and the controllability of our model.
放射科医生和病理学家经常做出具有重大影响的感知决策。例如,通过视觉搜索肿瘤并识别其是否为恶性,可能会对患者的生活产生改变。不幸的是,所有人类感知者——甚至是放射科医生——都存在感知偏差。由于在可预见的未来,人类感知者(医生)将最终判断肿瘤是否为恶性,因此理解和减轻人类感知偏差非常重要。虽然已经有关于医学图像感知任务中感知偏差的研究,但这些研究使用的刺激非常人工化,且经常受到批评。尚未使用真实的刺激,因为无法为心理物理学实验生成或控制它们。在这里,我们建议使用生成对抗网络(GAN)来创建生动逼真的医学图像刺激,可用于医学图像感知的心理物理学和计算机视觉研究。我们的模型可以以可控的方式生成具有特定形状和逼真纹理的肿瘤样刺激。各种实验证明了我们的GAN生成刺激的真实性和模型的可控性。