College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
Front Immunol. 2023 Jan 18;14:1053099. doi: 10.3389/fimmu.2023.1053099. eCollection 2023.
Dermatomyositis (DM) is a rare autoimmune disease characterized by severe muscle dysfunction, and the immune response of the muscles plays an important role in the development of DM. Currently, the diagnosis of DM relies on symptoms, physical examination, and biopsy techniques. Therefore, we used machine learning algorithm to screen key genes, and constructed and verified a diagnostic model composed of 5 key genes. In terms of immunity, The relationship between 5 genes and immune cell infiltration in muscle samples was analyzed. These diagnostic and immune-cell-related genes may contribute to the diagnosis and treatment of DM.
GSE5370 and GSE128470 datasets were utilised from the Gene Expression Omnibus database as DM test sets. And we also used R software to merge two datasets and to analyze the results of differentially expressed genes (DEGs) and functional correlation analysis. Then, we could detect diagnostic genes adopting least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) analyses. The validity of putative biomarkers was assessed using the GSE1551 dataset, and we confirmed the area under the receiver operating characteristic curve (AUC) values. Finally, CIBERSORT was used to evaluate immune cell infiltration in DM muscles and the correlations between disease-related biomarkers and immune cells.
In this study, a total of 414 DEGs were screened. , , , and were identified as potential DM diagnostic biomarkers(AUC > 0.85),and the expressions of 5 genes in DM group were higher than that in healthy group ( < 0.05). Immune cell infiltration analyses indicated that identified DM diagnostic biomarkers may be associated with M1 macrophages, activated NK cells, Tfh cells, resting NK cells and Treg cells.
The study identified that , , , and as potential diagnostic biomarkers of DM and these genes were closely correlated with immune cell infiltration.This will contribute to future studies in diagnosis and treatment of DM.
皮肌炎(DM)是一种罕见的自身免疫性疾病,其特征为严重的肌肉功能障碍,肌肉的免疫反应在 DM 的发展中起着重要作用。目前,DM 的诊断依赖于症状、体格检查和活检技术。因此,我们使用机器学习算法筛选关键基因,并构建和验证了由 5 个关键基因组成的诊断模型。在免疫方面,分析了 5 个基因与肌肉样本中免疫细胞浸润的关系。这些诊断和免疫细胞相关基因可能有助于 DM 的诊断和治疗。
从基因表达综合数据库中使用 GSE5370 和 GSE128470 数据集作为 DM 测试集。我们还使用 R 软件合并两个数据集,并分析差异表达基因(DEGs)和功能相关性分析的结果。然后,我们可以采用最小绝对收缩和选择算子(LASSO)逻辑回归和支持向量机递归特征消除(SVM-RFE)分析来检测诊断基因。使用 GSE1551 数据集评估潜在生物标志物的有效性,并确认受试者工作特征曲线(ROC)下面积(AUC)值。最后,使用 CIBERSORT 评估 DM 肌肉中的免疫细胞浸润以及与疾病相关生物标志物和免疫细胞的相关性。
本研究共筛选出 414 个 DEGs。 、 、 、 和 被鉴定为潜在的 DM 诊断生物标志物(AUC>0.85),并且在 DM 组中 5 个基因的表达高于健康组( <0.05)。免疫细胞浸润分析表明,鉴定的 DM 诊断生物标志物可能与 M1 巨噬细胞、活化 NK 细胞、Tfh 细胞、静止 NK 细胞和 Treg 细胞有关。
本研究确定 、 、 、 和 为 DM 的潜在诊断生物标志物,这些基因与免疫细胞浸润密切相关。这将有助于未来对 DM 的诊断和治疗的研究。