Suppr超能文献

生物信息学分析鉴定糖尿病肾病的诊断生物标志物及其与免疫浸润的相关性。

Bioinformatics analysis identifies diagnostic biomarkers and their correlation with immune infiltration in diabetic nephropathy.

作者信息

Huang Menglan, Zhu Zhengxi, Nong Cong, Liang Zhao, Ma Jingxue, Li Guangzhi

机构信息

Department of Nephrology, The People's Hospital of Baise, Baise, China.

Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

出版信息

Ann Transl Med. 2022 Jun;10(12):669. doi: 10.21037/atm-22-1682.

Abstract

BACKGROUND

Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Currently, microalbuminuria is mainly used as a diagnostic indicator of DN, but there are still limitations and lack of immune-related diagnostic markers. In this study, we aimed to explore diagnostic biomarkers associated with immune infiltration of DN.

METHODS

Immune-related differentially expressed genes (DEGs) were derived from those at the intersection of the ImmPort database and DEGs identified from 3 datasets, which were based on the Gene Expression Omnibus (GEO). Functional enrichment analyses were performed; a protein-protein interaction (PPI) network was constructed; and hub genes were identified by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). After screening the key genes using least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE), a prediction model for DN was constructed. The predictive performance of the model was quantified by receiver-operating characteristic curve, decision curve analysis, and nomogram. Next, infiltration of 22 types of immune cells in DN kidney tissue was evaluated using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). Expression of diagnostic markers was analyzed in DN and control patient groups to determine the genes with the maximum diagnostic potential. Finally, we explored the correlation between diagnostic markers and immune cells.

RESULTS

Overall, 191 immune-related DEGs were identified, that primarily positively regulated with cell adhesion, T cell activation, leukocyte proliferation and migration, urogenital system development, lymphocyte differentiation and proliferation, and mononuclear cell proliferation. Gene sets were related to the PI3K-Akt, MAPK, Rap1, and WNT signaling pathways. Finally, , , and were identified as diagnostic markers of DN and recognized in the 3 datasets [area under the curve (AUC) =0.921]. Immune cell infiltration analysis demonstrated that CCL19 was positively correlated with macrophages M1 (R=0.47, P<0.001) and macrophages M2 (R=0.75, P<0.001). CD1C was positively correlated with macrophages M1 (R=0.47, P<0.05), macrophages M2 (R=0.75, P<0.01), and monocytes (R=0.42, P<0.01). IL33 was positively correlated with macrophages M1 (R=0.45, P<0.05), macrophages M2 (R=0.74, P<0.01), and monocytes (R=0.41, P<0.01).

CONCLUSIONS

Our results provide evidence that , , and , which are associated with immune infiltration, are the potential diagnostic biomarkers for DN candidates.

摘要

背景

糖尿病肾病(DN)是终末期肾病(ESRD)的主要病因。目前,微量白蛋白尿主要用作DN的诊断指标,但仍存在局限性且缺乏免疫相关的诊断标志物。在本研究中,我们旨在探索与DN免疫浸润相关的诊断生物标志物。

方法

免疫相关差异表达基因(DEGs)来源于ImmPort数据库与从3个基于基因表达综合数据库(GEO)的数据集中鉴定出的DEGs的交集。进行功能富集分析;构建蛋白质-蛋白质相互作用(PPI)网络;并通过检索相互作用基因/蛋白质的搜索工具(STRING)鉴定枢纽基因。使用最小绝对收缩和选择算子(LASSO)和支持向量机递归特征消除(SVM-RFE)筛选关键基因后,构建DN的预测模型。通过受试者工作特征曲线、决策曲线分析和列线图对模型的预测性能进行量化。接下来,使用通过估计RNA转录本相对亚群进行细胞类型鉴定(CIBERSORT)评估DN肾组织中22种免疫细胞的浸润情况。在DN患者组和对照组中分析诊断标志物的表达,以确定具有最大诊断潜力的基因。最后,我们探索了诊断标志物与免疫细胞之间的相关性。

结果

总体而言,共鉴定出191个免疫相关DEGs,它们主要与细胞黏附、T细胞活化、白细胞增殖和迁移、泌尿生殖系统发育、淋巴细胞分化和增殖以及单核细胞增殖呈正调控。基因集与PI3K-Akt、MAPK、Rap1和WNT信号通路相关。最后,[此处原文缺失具体基因名称]被鉴定为DN的诊断标志物,并在3个数据集中得到验证[曲线下面积(AUC)=0.921]。免疫细胞浸润分析表明,CCL19与M1巨噬细胞(R=0.47,P<0.001)和M2巨噬细胞(R=0.75,P<0.001)呈正相关。CD1C与M1巨噬细胞(R=0.47,P<0.05)、M2巨噬细胞(R=0.75,P<0.01)和单核细胞(R=0.42,P<0.01)呈正相关。IL33与M1巨噬细胞(R=0.45,P<0.05)、M2巨噬细胞(R=0.74,P<0.01)和单核细胞(R=0.41,P<0.01)呈正相关。

结论

我们的结果表明,[此处原文缺失具体基因名称]与免疫浸润相关,是DN潜在的诊断生物标志物候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce3/9279778/06b1ca3f416a/atm-10-12-669-f1.jpg

相似文献

引用本文的文献

1
Identification of key genes in diabetic nephropathy based on lipid metabolism.
Exp Ther Med. 2024 Aug 23;28(5):406. doi: 10.3892/etm.2024.12695. eCollection 2024 Nov.
3
Combined Placental Mesenchymal Stem Cells with Guided Nanoparticles Effective Against Diabetic Nephropathy in Mouse Model.
Int J Nanomedicine. 2024 Jan 26;19:901-915. doi: 10.2147/IJN.S446733. eCollection 2024.
4
APOC1 as a novel diagnostic biomarker for DN based on machine learning algorithms and experiment.
Front Endocrinol (Lausanne). 2023 Feb 20;14:1102634. doi: 10.3389/fendo.2023.1102634. eCollection 2023.

本文引用的文献

1
PEDF relieves kidney injury in type 2 diabetic nephropathy mice by reducing macrophage infiltration.
Endokrynol Pol. 2021;72(6):643-651. doi: 10.5603/EP.a2021.0085. Epub 2021 Oct 14.
2
ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram.
Front Genet. 2021 Sep 7;12:706907. doi: 10.3389/fgene.2021.706907. eCollection 2021.
3
FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model.
Diabetes Metab Syndr Obes. 2021 Sep 10;14:3975-3987. doi: 10.2147/DMSO.S314709. eCollection 2021.
4
Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease From 1990 to 2019.
Front Endocrinol (Lausanne). 2021 Jul 1;12:672350. doi: 10.3389/fendo.2021.672350. eCollection 2021.
5
Epigenetics and Inflammation in Diabetic Nephropathy.
Front Physiol. 2021 May 5;12:649587. doi: 10.3389/fphys.2021.649587. eCollection 2021.
7
What do we know about biomarkers in diabetic kidney disease?
Endokrynol Pol. 2020;71(6):545-550. doi: 10.5603/EP.a2020.0077.
9
Identification of hub genes in diabetic kidney disease via multiple-microarray analysis.
Ann Transl Med. 2020 Aug;8(16):997. doi: 10.21037/atm-20-5171.
10
Diabetic Kidney Disease: Challenges, Advances, and Opportunities.
Kidney Dis (Basel). 2020 Jul;6(4):215-225. doi: 10.1159/000506634. Epub 2020 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验