Tao Binglin, McPherson Ian J, Daviddi Enrico, Bentley Cameron L, Unwin Patrick R
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
School of Chemistry, Monash University, Clayton 3800, VIC, Australia.
ACS Sustain Chem Eng. 2023 Jan 13;11(4):1459-1471. doi: 10.1021/acssuschemeng.2c06075. eCollection 2023 Jan 30.
Scanning electrochemical cell microscopy (SECCM) facilitates single particle measurements of battery materials using voltammetry at fast scan rates (1 V s), providing detailed insight into intrinsic particle kinetics, otherwise obscured by matrix effects. Here, we elucidate the electrochemistry of lithium manganese oxide (LiMnO) particles, using a series of SECCM probes of graded size to determine the evolution of electrochemical characteristics from the single particle to ensemble level. Nanometer scale control over the SECCM meniscus cell position and height further allows the study of variable particle/substrate electrolyte wetting, including comparison of fully wetted particles (where contact is also made with the underlying glassy carbon substrate electrode) vs partly wetted particles. We find ensembles of LiMnO particles show voltammograms with much larger peak separations than those of single particles. In addition, if the SECCM meniscus is brought into contact with the substrate electrode, such that the particle-support contact changes from to , a further dramatic increase in peak separation is observed. Finite element method modeling of the system reveals the importance of finite electronic conductivity of the particles, contact resistance, surface kinetics, particle size, and contact area with the electrode surface in determining the voltammetric waveshape at fast scan rates, while the responses are relatively insensitive to Li diffusion coefficients over a range of typical values. The simulation results explain the variability in voltammetric responses seen at the single particle level and reveal some of the key factors responsible for the evolution of the response, from ensemble, contact, and wetting perspectives. The variables and considerations explored herein are applicable to any single entity (nanoscale) electrochemical study involving low conductivity materials and should serve as a useful guide for further investigations of this type. Overall, this study highlights the potential of multiscale measurements, where wetting, electronic contact, and ionic contact can be varied independently, to inform the design of practical composite electrodes.
扫描电化学池显微镜(SECCM)有助于在快速扫描速率(1 V/s)下使用伏安法对电池材料进行单颗粒测量,从而深入了解本征颗粒动力学,否则这些动力学容易被基体效应所掩盖。在此,我们通过一系列分级尺寸的SECCM探针来阐明锂锰氧化物(LiMnO)颗粒的电化学性质,以确定从单颗粒到整体水平的电化学特性演变。对SECCM弯月面池位置和高度的纳米级控制进一步使得能够研究可变的颗粒/基底电解质润湿性,包括完全润湿颗粒(也与下面的玻璃碳基底电极接触)与部分润湿颗粒的比较。我们发现LiMnO颗粒的整体伏安图的峰间距比单颗粒的峰间距大得多。此外,如果将SECCM弯月面与基底电极接触,使得颗粒 - 载体接触从 变为 ,则会观察到峰间距进一步急剧增加。该系统的有限元方法建模揭示了颗粒的有限电子电导率、接触电阻、表面动力学、颗粒尺寸以及与电极表面的接触面积在快速扫描速率下确定伏安波形时的重要性,而在一系列典型值范围内,响应相对对Li扩散系数不敏感。模拟结果解释了在单颗粒水平上观察到的伏安响应的变异性,并从整体、接触和润湿性角度揭示了一些导致响应演变的关键因素。本文探讨的变量和考虑因素适用于任何涉及低电导率材料的单实体(纳米级)电化学研究,应为这类进一步研究提供有用的指导。总体而言,这项研究突出了多尺度测量的潜力,其中润湿性、电子接触和离子接触可以独立变化,为实际复合电极的设计提供信息。