Roehrich Brian, Sepunaru Lior
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
ACS Meas Sci Au. 2024 Jul 11;4(4):467-474. doi: 10.1021/acsmeasuresciau.4c00017. eCollection 2024 Aug 21.
Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation-processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.
在电分析技术中,电化学阻抗谱(EIS)具有频率分辨率高的独特优势。这使得EIS能够轻松地对构成电化学装置的电容、电阻和扩散过程进行去卷积分析。在此,我们报告了对单个赝电容纳米颗粒的阻抗谱测量。我们选择普鲁士蓝作为我们的模型体系,因为它将电子转移反应与钠离子嵌入过程耦合在一起,这些过程虽然本质上相互交织,但使用EIS可以很容易地分辨出来。我们使用扫描电化学池显微镜(SECCM)在微滴中分离单个普鲁士蓝颗粒,并使用多正弦快速傅里叶变换技术测量它们的阻抗谱。通过这样做,我们能够提取每个颗粒的交换电流密度和钠离子扩散率,它们分别反映了颗粒的电子和离子电导率。令人惊讶的是,这些参数在颗粒之间相差一个数量级以上,并且与颗粒大小无关,彼此之间也没有相关性。这种明显的异质性意味着,在一个假设的电池阴极中,一个活性颗粒转移电子的速度可能比其相邻颗粒快10倍;与同一电极中其他性能较好的颗粒相比,另一个颗粒可能存在钠离子传输缓慢的问题,并且充电速率能力受限。我们的结果揭示了这种内在的异质性,同时证明了EIS在未来单颗粒研究中的实用性。