Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
J Am Geriatr Soc. 2023 Jun;71(6):1829-1839. doi: 10.1111/jgs.18262. Epub 2023 Feb 6.
Emergency department (ED) visits are common at the end-of-life, but the identification of patients with life-limiting illness remains a key challenge in providing timely and resource-sensitive advance care planning (ACP) and palliative care services. To date, there are no validated, automatable instruments for ED end-of-life screening. Here, we developed a novel electronic health record (EHR) prognostic model to screen older ED patients at high risk for 6-month mortality and compare its performance to validated comorbidity indices.
This was a retrospective, observational cohort study of ED visits from adults aged ≥65 years who visited any of 9 EDs across a large regional health system between 2014 and 2019. Multivariable logistic regression that included clinical and demographic variables, vital signs, and laboratory data was used to develop a 6-month mortality predictive model-the Geriatric End-of-life Screening Tool (GEST) using five-fold cross-validation on data from 8 EDs. Performance was compared to the Charlson and Elixhauser comorbidity indices using area under the receiver-operating characteristic curve (AUROC), calibration, and decision curve analyses. Reproducibility was tested against data from the remaining independent ED within the health system. We then used GEST to investigate rates of ACP documentation availability and code status orders in the EHR across risk strata.
A total of 431,179 encounters by 123,128 adults were included in this study with a 6-month mortality rate of 12.2%. Charlson (AUROC (95% CI): 0.65 (0.64-0.69)) and Elixhauser indices (0.69 (0.68-0.70)) were outperformed by GEST (0.82 (0.82-0.83)). GEST displayed robust performance across demographic subgroups and in our independent validation site. Among patients with a greater than 30% mortality risk using GEST, only 5.0% had ACP documentation; 79.0% had a code status previously ordered, of which 70.7% were full code. In decision curve analysis, GEST provided greater net benefit than the Charlson and Elixhauser scores.
Prognostic models using EHR data robustly identify high mortality risk older adults in the ED for whom code status, ACP, or palliative care interventions may be of benefit. Although all tested methods identified patients approaching the end-of-life, GEST was most performant. These tools may enable resource-sensitive end-of-life screening in the ED.
在生命末期,急诊科(ED)就诊很常见,但识别患有绝症的患者仍然是提供及时和资源敏感的预先护理计划(ACP)和姑息治疗服务的关键挑战。迄今为止,尚无经过验证的可自动化的 ED 终末生命筛查工具。在这里,我们开发了一种新的电子健康记录(EHR)预后模型,用于筛查在 6 个月内死亡风险较高的老年 ED 患者,并将其性能与经过验证的合并症指数进行比较。
这是一项回顾性、观察性队列研究,纳入了 2014 年至 2019 年间在一个大型区域卫生系统的 9 家 ED 就诊的年龄≥65 岁的成年人。使用包含临床和人口统计学变量、生命体征和实验室数据的多变量逻辑回归,我们在来自 8 家 ED 的数据上使用五重交叉验证来开发 6 个月死亡率预测模型——老年终末期筛选工具(GEST)。使用接受者操作特征曲线下面积(AUROC)、校准和决策曲线分析比较了 Charlson 和 Elixhauser 合并症指数的性能。我们使用该卫生系统内其余独立 ED 的数据对其进行了重现性测试。然后,我们使用 GEST 调查了在风险分层中 EHR 中 ACP 文档的可用性和代码状态顺序。
本研究共纳入 123128 名成年人的 431179 次就诊,6 个月死亡率为 12.2%。Charlson(AUROC(95%CI):0.65(0.64-0.69))和 Elixhauser 指数(0.69(0.68-0.70))的表现优于 GEST(0.82(0.82-0.83))。GEST 在所有人口统计学亚组中以及在我们的独立验证站点中都表现出了稳健的性能。在使用 GEST 预测 30%以上死亡率风险的患者中,仅有 5.0%的患者有 ACP 记录;79.0%的患者之前已下达过代码状态,其中 70.7%为完全代码。在决策曲线分析中,GEST 提供的净收益大于 Charlson 和 Elixhauser 评分。
使用 EHR 数据的预测模型可以在 ED 中稳健地识别出患有绝症的老年高危患者,这些患者可能需要进行代码状态、ACP 或姑息治疗干预。虽然所有测试方法都能识别接近生命末期的患者,但 GEST 的性能最佳。这些工具可能能够在 ED 中实现对生命末期的资源敏感筛查。