Suppr超能文献

一种抗噪的生物分子离子深度聚类提高了质谱图像的可解释性。

A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images.

机构信息

Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.

Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg 79106, Germany.

出版信息

Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad067.

Abstract

MOTIVATION

Mass Spectrometry Imaging (MSI) analyzes complex biological samples such as tissues. It simultaneously characterizes the ions present in the tissue in the form of mass spectra, and the spatial distribution of the ions across the tissue in the form of ion images. Unsupervised clustering of ion images facilitates the interpretation in the spectral domain, by identifying groups of ions with similar spatial distributions. Unfortunately, many current methods for clustering ion images ignore the spatial features of the images, and are therefore unable to learn these features for clustering purposes. Alternative methods extract spatial features using deep neural networks pre-trained on natural image tasks; however, this is often inadequate since ion images are substantially noisier than natural images.

RESULTS

We contribute a deep clustering approach for ion images that accounts for both spatial contextual features and noise. In evaluations on a simulated dataset and on four experimental datasets of different tissue types, the proposed method grouped ions from the same source into a same cluster more frequently than existing methods. We further demonstrated that using ion image clustering as a pre-processing step facilitated the interpretation of a subsequent spatial segmentation as compared to using either all the ions or one ion at a time. As a result, the proposed approach facilitated the interpretability of MSI data in both the spectral domain and the spatial domain.

AVAILABILITYAND IMPLEMENTATION

The data and code are available at https://github.com/DanGuo1223/mzClustering.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

质谱成像(MSI)分析复杂的生物样本,如组织。它以质谱的形式同时对组织中存在的离子进行特征分析,并以离子图像的形式对组织中离子的空间分布进行特征分析。离子图像的无监督聚类有助于在谱域中进行解释,通过识别具有相似空间分布的离子组。不幸的是,目前许多用于聚类离子图像的方法忽略了图像的空间特征,因此无法为聚类目的学习这些特征。替代方法使用在自然图像任务上预训练的深度神经网络提取空间特征;然而,由于离子图像比自然图像噪声大得多,这通常是不够的。

结果

我们提出了一种用于离子图像的深度聚类方法,该方法同时考虑了空间上下文特征和噪声。在模拟数据集和四种不同组织类型的实验数据集上的评估中,与现有方法相比,该方法更频繁地将来自同一来源的离子分组到同一簇中。我们进一步证明,与使用一次所有离子或一次一个离子相比,使用离子图像聚类作为预处理步骤有助于后续空间分割的解释。因此,该方法促进了 MSI 数据在谱域和空间域中的可解释性。

可用性和实现

数据和代码可在 https://github.com/DanGuo1223/mzClustering 上获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1c/9942547/3ed036e0f47f/btad067f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验