Radziński Piotr, Skrajny Jakub, Moczulski Maurycy, Ciach Michał A, Valkenborg Dirk, Balluff Benjamin, Gambin Anna
Institute of Informatics, University of Warsaw, Stefana Banacha 2, Warsaw 02-097, Poland.
Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta.
Anal Chem. 2025 Jul 29;97(29):15579-15585. doi: 10.1021/acs.analchem.4c06913. Epub 2025 Jul 21.
In this study, we introduce a novel encoding algorithm utilizing contrastive learning to address the substantial data size challenges inherent in mass spectrometry imaging. Our algorithm compresses MSI data into fixed-length vectors, significantly reducing storage requirements while maintaining crucial diagnostic information. Through rigorous testing on data sets, including mouse bladder cross sections and biopsies from patients with Barrett's esophagus, we demonstrate that our method not only reduces the data size but also preserves the essential features for accurate analysis. Segmentation tasks performed on both raw and encoded images using traditional -means and our proposed iterative -means algorithm show that the encoded images achieve the same or even higher accuracy than the segmentation on raw images. Finally, reducing the size of images makes it possible to perform t-SNE, a technique intended for frequent use in the field to gain a deeper understanding of measured tissues. However, its application has so far been limited by computational capabilities. The algorithm's code, written in Python, is available on our GitHub page https://github.com/kskrajny/MSI-Segmentation.
在本研究中,我们引入了一种利用对比学习的新型编码算法,以应对质谱成像中固有的大量数据规模挑战。我们的算法将质谱成像(MSI)数据压缩为固定长度的向量,在保持关键诊断信息的同时,显著降低了存储需求。通过对包括小鼠膀胱横截面和巴雷特食管患者活检样本在内的数据集进行严格测试,我们证明我们的方法不仅减小了数据规模,还保留了用于准确分析的基本特征。使用传统均值算法和我们提出的迭代均值算法对原始图像和编码图像进行的分割任务表明,编码图像实现了与原始图像分割相同甚至更高的准确率。最后,减小图像大小使得执行t-SNE成为可能,t-SNE是该领域常用的一种技术,用于更深入地了解被测组织。然而,到目前为止,其应用一直受到计算能力的限制。该算法的代码用Python编写,可在我们的GitHub页面https://github.com/kskrajny/MSI-Segmentation上获取。