Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
Anal Chem. 2021 Jun 22;93(24):8399-8407. doi: 10.1021/acs.analchem.0c04720. Epub 2021 Jun 7.
Spatial metabolomics using mass spectrometry imaging (MSI) is a powerful tool to map hundreds to thousands of metabolites in biological systems. One major challenge in MSI is the annotation of / values, which is substantially complicated by background ions introduced throughout the chemicals and equipment used during experimental procedures. Among many factors, the formation of adducts with sodium or potassium ions, or in case of matrix-assisted laser desorption ionization (MALDI)-MSI, the presence of abundant matrix clusters strongly increases total / peak counts. Currently, there is a limitation to identify the chemistry of the many unknown peaks to interpret their biological function. We took advantage of the co-localization of adducts with their parent ions and the accuracy of high mass resolution to estimate adduct abundance in 20 datasets from different vendors of mass spectrometers. Metabolites ranging from lipids to amines and amino acids form matrix adducts with the commonly used 2,5-dihydroxybenzoic acid (DHB) matrix like [M + (DHB-HO) + H] and [M + DHB + Na]. Current data analyses neglect those matrix adducts and overestimate total metabolite numbers, thereby expanding the number of unidentified peaks. Our study demonstrates that MALDI-MSI data are strongly influenced by adduct formation across different sample types and vendor platforms and reveals a major influence of so far unrecognized metabolite-matrix adducts on total peak counts (up to one third). We developed a software package, 2, for the community for an automated putative assignment and quantification of metabolite-matrix adducts enabling users to ultimately focus on the biologically relevant portion of the MSI data.
基于质谱成像(MSI)的空间代谢组学是一种强大的工具,可以在生物系统中绘制数百到数千种代谢物。MSI 中的一个主要挑战是 / 值的注释,这在很大程度上因实验过程中使用的化学物质和设备引入的背景离子而变得复杂。在许多因素中,与钠离子或钾离子形成加合物,或者在基质辅助激光解吸电离(MALDI)-MSI 的情况下,大量基质簇的存在强烈增加了总 / 峰计数。目前,对于识别许多未知峰的化学性质以解释其生物学功能存在局限性。我们利用加合物与其母体离子的共定位以及高质量分辨率的准确性,来估算来自不同质谱仪供应商的 20 个数据集的加合物丰度。从脂质到胺和氨基酸的代谢物与常用的 2,5-二羟基苯甲酸(DHB)基质形成加合物,如 [M + (DHB-HO)+ H] 和 [M + DHB + Na]。目前的数据分析忽略了这些基质加合物,高估了总代谢物数量,从而增加了未识别峰的数量。我们的研究表明,MALDI-MSI 数据受到不同样本类型和供应商平台之间加合物形成的强烈影响,并揭示了迄今为止未被认识到的代谢物-基质加合物对总峰计数的主要影响(高达三分之一)。我们为社区开发了一个名为 2 的软件包,用于自动假定分配和量化代谢物-基质加合物,使用户最终能够专注于 MSI 数据中与生物学相关的部分。