Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
Nanoscale. 2023 Feb 23;15(8):4114-4122. doi: 10.1039/d2nr06573h.
Interfacial thermal resistance is the main barrier restricting the heat dissipation of thermal management materials in electronic equipment. The interface structure formed by covalent bonding is an effective way to promote interfacial heat transfer. Herein, an integrated composite with multi-aspect covalent bonding beneficial for heat transmission is constructed by polyimide (PI) polymerization with maleimide modified graphene nanosheets (M@GNS). The interfacial structure with low thermal resistance built by covalent bonding and oriented graphene arrangement initiated by the coating process makes the in-plane thermal conductivity of the composite as high as 16.10 W m K. Finite element simulation and 1000 bending tests are carried out to further verify the performance advantages of the integrated structure in the internal thermal diffusion and long-term use of the composite. M@GNS/PI with integrated structure provides extra heat transfer channels for heat dissipation, possibly providing an effective way to address the traditional thermal accumulation issue of electronic devices.
界面热阻是限制电子设备热管理材料散热的主要障碍。通过共价键形成的界面结构是促进界面热传递的有效途径。本文通过马来酰亚胺改性石墨烯纳米片(M@GNS)聚合聚酰亚胺(PI)构建了一种具有多方面共价键的综合复合材料,有利于传热。这种由共价键和涂层工艺引发的取向石墨烯排列形成的低热阻界面结构使复合材料的面内热导率高达 16.10 W m K。通过有限元模拟和 1000 次弯曲试验进一步验证了综合结构在复合材料内部热扩散和长期使用中的性能优势。具有综合结构的 M@GNS/PI 为散热提供了额外的传热通道,可能为解决电子设备的传统热积累问题提供了一种有效途径。