Suppr超能文献

具有细胞内 ATP 驱动的 dsRNA 递释功能的核壳型聚合物纳米结构,用于昆虫害虫的遗传控制。

Core-Shell Polymeric Nanostructures with Intracellular ATP-Fueled dsRNA Delivery toward Genetic Control of Insect Pests.

机构信息

Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China.

Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China.

出版信息

J Agric Food Chem. 2023 Feb 15;71(6):2762-2772. doi: 10.1021/acs.jafc.2c05737. Epub 2023 Feb 6.

Abstract

Transgenic RNA interference (RNAi) represents a burgeoning and promising alternative avenue to manage plant diseases and insect pests in plants. Nonviral nanostructured dsRNA carriers have been demonstrated to possess great potential to facilitate the application of RNAi. However, it remains a critical challenge to achieve the targeted and effective release of dsRNA into the pest cells, limiting the efficiency of the biological control of pests and diseases in practical applications. In this study, we designed and constructed a new type of core-shell polymeric nanostructure (CSPN) with controllable structure, eco-friendliness, and good biocompatibility, on which dsRNA can be efficiently loaded. Once loaded into CSPNs, the dsRNA can be effectively prevented from nonsense degradation by enzymes before entering cells, and it shows targeted and image-guided release triggered by intracellular ATP, which significantly increases the efficiency of gene transfection. Significantly, the study of the typical lepidoptera silkworm after oral feeding demonstrates the potential of ds in CSPNs for a much better knockdown efficiency than that of naked ds. This innovation enables the nanotechnology developed for the disease microenvironment-triggered release of therapeutic genes for application in sustainable crop protection.

摘要

转基因 RNA 干扰 (RNAi) 代表了一种新兴且有前途的替代途径,可以用于管理植物中的疾病和害虫。非病毒纳米结构双链 RNA 载体已被证明具有很大的潜力来促进 RNAi 的应用。然而,实现双链 RNA 靶向有效释放到害虫细胞中仍然是一个关键挑战,限制了在实际应用中对病虫害的生物防治效率。在本研究中,我们设计并构建了一种新型的具有可控结构、生态友好性和良好生物相容性的核壳聚合物纳米结构(CSPN),可有效地负载双链 RNA。一旦负载到 CSPN 中,双链 RNA 可以在进入细胞之前有效地防止酶的无意义降解,并且可以通过细胞内 ATP 触发靶向和图像引导释放,这显著提高了基因转染的效率。值得注意的是,通过口服喂养典型鳞翅目蚕的研究表明,CSPN 中的 dsRNA 具有比裸露 dsRNA 更好的基因敲低效率的潜力。这项创新使为疾病微环境触发的治疗基因释放而开发的纳米技术能够应用于可持续的作物保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验