Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2220475120. doi: 10.1073/pnas.2220475120. Epub 2023 Feb 6.
Chromatin modifications play a fundamental role in controlling transcription and genome stability and yet despite their importance, are poorly understood in early-diverging fungi. We present a comprehensive study of histone lysine and DNA methyltransferases across the Mucoromycota, emphasizing heterochromatin formation pathways that rely on the Clr4 complex involved in H3K9-methylation, the Polycomb-repressive complex 2 driving H3K27-methylation, or DNMT1-like methyltransferases that catalyze 5mC DNA methylation. Our analysis uncovered H3K9-methylated heterochromatin as the major chromatin modification repressing transcription in these fungi, which lack both Polycomb silencing and cytosine methylation. Although small RNAs generated by RNA interference (RNAi) pathways facilitate the formation of heterochromatin in many eukaryotic organisms, we show that RNAi is not required to maintain either genomic or centromeric heterochromatin in . H3K9-methylation and RNAi act independently to control centromeric regions, suggesting a functional subspecialization. Whereas the H3K9 methyltransferase Clr4 and heterochromatin formation are essential for cell viability, RNAi is dispensable for viability yet acts as the main epigenetic, regulatory force repressing transposition of centromeric GremLINE1 elements. Mutations inactivating canonical RNAi lead to rampant transposition and insertional inactivation of targets resulting in antimicrobial drug resistance. This fine-tuned, Rdrp2-dependent RNAi activity is critical for genome stability, restricting GremLINE1 retroelements to the centromeres where they occupy long heterochromatic islands. Taken together, our results suggest that RNAi and heterochromatin formation are independent genome defense and regulatory mechanisms in the Mucorales, contributing to a paradigm shift from the cotranscriptional gene silencing observed in fission yeasts to models in which heterochromatin and RNAi operate independently in early-diverging fungi.
染色质修饰在控制转录和基因组稳定性方面起着至关重要的作用,但尽管它们很重要,在早期分化的真菌中却知之甚少。我们对毛霉目中的组蛋白赖氨酸和 DNA 甲基转移酶进行了全面研究,强调了依赖于 Clr4 复合物的异染色质形成途径,该复合物参与 H3K9 甲基化、Polycomb 抑制复合物 2 驱动 H3K27 甲基化或催化 5mC DNA 甲基化的 DNMT1 样甲基转移酶。我们的分析揭示了 H3K9 甲基化的异染色质是这些真菌中抑制转录的主要染色质修饰,这些真菌既缺乏 Polycomb 沉默也缺乏胞嘧啶甲基化。尽管 RNA 干扰 (RNAi) 途径产生的小 RNA 有助于许多真核生物中异染色质的形成,但我们表明,RNAi 不是维持基因组或着丝粒异染色质所必需的。H3K9 甲基化和 RNAi 独立作用来控制着丝粒区域,表明功能专业化。虽然 H3K9 甲基转移酶 Clr4 和异染色质形成对于细胞活力是必不可少的,但 RNAi 对于活力是可有可无的,但作为主要的表观遗传调节力量,抑制着丝粒 GremLINE1 元件的转位。使经典 RNAi 失活的突变导致猖獗的转位和靶标插入失活,导致抗微生物药物耐药性。这种精细的、依赖于 Rdrp2 的 RNAi 活性对于基因组稳定性至关重要,将 GremLINE1 逆转录元件限制在它们占据长异染色质岛的着丝粒上。总之,我们的研究结果表明,RNAi 和异染色质形成是毛霉目中独立的基因组防御和调节机制,这有助于从裂殖酵母中观察到的转录共沉默模型向早期分化真菌中异染色质和 RNAi 独立作用的模型转变。