Suppr超能文献

新型外显基因安全港,用于精确的治疗性 T 细胞工程。

Novel extragenic genomic safe harbors for precise therapeutic T-cell engineering.

机构信息

Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.

Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY.

出版信息

Blood. 2023 Jun 1;141(22):2698-2712. doi: 10.1182/blood.2022018924.

Abstract

Cell therapies that rely on engineered immune cells can be enhanced by achieving uniform and controlled transgene expression in order to maximize T-cell function and achieve predictable patient responses. Although they are effective, current genetic engineering strategies that use γ-retroviral, lentiviral, and transposon-based vectors to integrate transgenes, unavoidably produce variegated transgene expression in addition to posing a risk of insertional mutagenesis. In the setting of chimeric antigen receptor (CAR) therapy, inconsistent and random CAR expression may result in tonic signaling, T-cell exhaustion, and variable T-cell persistence. Here, we report and validate an algorithm for the identification of extragenic genomic safe harbors (GSH) that can be efficiently targeted for DNA integration and can support sustained and predictable CAR expression in human peripheral blood T cells. The algorithm is based on 7 criteria established to minimize genotoxicity by directing transgene integration away from functionally important genomic elements, maximize efficient CRISPR/Cas9-mediated targeting, and avert transgene silencing over time. T cells engineered to express a CD19 CAR at GSH6, which meets all 7 criteria, are curative at low cell dose in a mouse model of acute lymphoblastic leukemia, matching the potency of CAR T cells engineered at the TRAC locus and effectively resisting tumor rechallenge 100 days after their infusion. The identification of functional extragenic GSHs thus expands the human genome available for therapeutic precision engineering.

摘要

依赖于工程化免疫细胞的细胞疗法可以通过实现均匀和受控的转基因表达来增强,以最大限度地提高 T 细胞功能并实现可预测的患者反应。尽管它们很有效,但目前使用γ逆转录病毒、慢病毒和转座子载体将转基因整合的遗传工程策略不可避免地会产生斑驳的转基因表达,并且还存在插入诱变的风险。在嵌合抗原受体 (CAR) 治疗中,不一致和随机的 CAR 表达可能导致持续信号转导、T 细胞衰竭和可变 T 细胞持久性。在这里,我们报告并验证了一种用于鉴定外基因座基因组安全港 (GSH) 的算法,该算法可以有效地靶向 DNA 整合,并可以支持人外周血 T 细胞中持续和可预测的 CAR 表达。该算法基于 7 个标准,通过将转基因整合引导远离功能重要的基因组元件来最小化遗传毒性,最大化高效的 CRISPR/Cas9 介导的靶向,并避免转基因随时间沉默。在急性淋巴细胞白血病小鼠模型中,经过 GSH6 工程改造表达 CD19 CAR 的 T 细胞在低细胞剂量下具有治愈作用,与在 TRAC 基因座工程改造的 CAR T 细胞的效力相匹配,并在输注后 100 天有效地抵抗肿瘤再挑战。因此,功能性外基因座 GSH 的鉴定扩展了可用于治疗性精确工程的人类基因组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e05/10273162/94ee5d892bbc/BLOOD_BLD-2022-018924-fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验