Suppr超能文献

通过使用与光学成像相关的高性能电聚合微电极阵列,在二维细胞培养中实现神经元定位的精确性。

Precision of neuronal localization in 2D cell cultures by using high-performance electropolymerized microelectrode arrays correlated with optical imaging.

作者信息

Ghazal Mahdi, Scholaert Corentin, Dumortier Corentin, Lefebvre Camille, Barois Nicolas, Janel Sebastien, Tarhan Mehmet Cagatay, Colin Morvane, Buée Luc, Halliez Sophie, Pecqueur Sebastien, Coffinier Yannick, Alibart Fabien, Yger Pierre

机构信息

Institut d'Électronique, Microélectronique et Nanotechnologie (IEMN), CNRS, UMR 8520, F-59652 Villeneuve d'Ascq, France.

Lille Neurosciences & Cognition (lilNCog)-U1172 (INSERM, Lille), Univ Lille, CHU Lille 59045 Lille, France.

出版信息

Biomed Phys Eng Express. 2023 Mar 17;9(3). doi: 10.1088/2057-1976/acb93e.

Abstract

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.

摘要

最近,用于细胞外记录众多神经元同步电活动的电子设备发展迅速,为连接和解读神经元活动开辟了新的可能性。在这项工作中,我们测试了如何利用3,4-乙撑二氧噻吩(EDOT)电聚合来调节制造后的材料,以优化此类设备的细胞/电极界面。我们的结果表明,与金电极相比,该设备的信噪比得到了改善,生物相容性更好,检测到的神经元数量更多。然后,将这种增强的记录与二维神经元培养相结合,并结合荧光光学成像,我们检查了仅通过细胞外信号就能估计所记录神经元位置的程度。我们的结果表明,假设神经元表现为单极子,则可以以大约几十微米的精度估计其位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验