State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
Metab Eng. 2023 Mar;76:110-119. doi: 10.1016/j.ymben.2023.02.001. Epub 2023 Feb 4.
p-Hydroxyacetophenone (p-HAP) and its glucoside picein are plant-derived natural products that have been extensively used in chemical, pharmaceutical and cosmetic industries owing to their antioxidant, antibacterial and antiseptic activities. However, the natural biosynthetic pathways for p-HAP and picein have yet been resolved so far, limiting their biosynthesis in microorganisms. In this study, we design and construct a biosynthetic pathway for de novo production of p-HAP and picein from glucose in E. coli. First, screening and characterizing pathway enzymes enable us to successfully establish functional biosynthetic pathway for p-HAP production. Then, the rate-limiting step in the pathway caused by a reversible alcohol dehydrogenase is completely eliminated by modulating intracellular redox cofactors. Subsequent host strain engineering via systematic increase of precursor supplies enables production enhancement of p-HAP with a titer of 1445.3 mg/L under fed-batch conditions. Finally, a novel p-HAP glucosyltransferase capable of generating picein from p-HAP is identified and characterized from a series of glycosyltransferases. On this basis, de novo biosynthesis of picein from glucose is achieved with a titer of 210.7 mg/L under fed-batch conditions. This work not only demonstrates a microbial platform for p-HAP and picein synthesis, but also represents a generalizable pathway design strategy to produce value-added compounds.
对羟基苯乙酮(p-HAP)及其糖苷皮可汀是植物来源的天然产物,由于其抗氧化、抗菌和防腐活性,已广泛应用于化学、制药和化妆品行业。然而,迄今为止,p-HAP 和皮可汀的天然生物合成途径尚未得到解决,限制了它们在微生物中的生物合成。在这项研究中,我们设计并构建了大肠杆菌从头生物合成 p-HAP 和皮可汀的生物合成途径。首先,通过筛选和表征途径酶,我们成功地建立了 p-HAP 生产的功能性生物合成途径。然后,通过调节细胞内氧化还原辅因子,完全消除了途径中由可逆醇脱氢酶引起的限速步骤。随后通过系统增加前体供应进行宿主菌株工程改造,使 p-HAP 在分批补料条件下的产量提高到 1445.3mg/L。最后,从一系列糖基转移酶中鉴定并表征了一种能够从 p-HAP 生成皮可汀的新型 p-HAP 葡萄糖基转移酶。在此基础上,通过分批补料条件实现了葡萄糖从头生物合成皮可汀,产量为 210.7mg/L。这项工作不仅展示了一个微生物平台用于 p-HAP 和皮可汀的合成,而且还代表了一种可推广的途径设计策略,用于生产高附加值化合物。