Suppr超能文献

DGCL:基于距离和图对比学习的药物推荐。

DGCL: Distance-wise and Graph Contrastive Learning for medication recommendation.

机构信息

School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China.

School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China.

出版信息

J Biomed Inform. 2023 Mar;139:104301. doi: 10.1016/j.jbi.2023.104301. Epub 2023 Feb 4.

Abstract

Medicine recommendation aims to provide a combination of medicine based on the patient's electronic health record (EHR), which is an essential task in healthcare. Existing methods either base recommendations on EHRs or provide models with knowledge of drug-drug interactions (DDIs) to achieve DDI reduction. However, the former models the patient's health history but ignores undesirable DDIs, while the latter lacks mining of patient health records and gets low recommendation accuracy. Therefore, this study contributes to research on personalized medication recommendations that consider drug interaction effects and models the patient's past medical history. In this paper, the Distance-wise and Graph Contrastive Learning (DGCL) framework is proposed. Specifically, we develop a two-stage neural network module for clinical record learning. We propose the distance detection loss to model the difference between the output distribution of current cases and historical records. In the DDI recognition and control task, DGCL proposes a graph contrastive learning method to jointly train the DDI knowledge graph and the electronic record graph, thereby effectively controlling the level of DDI for recommended medications. By comparing the performance on the MIMIC-III dataset with several baselines, DGCL outperforms other models in terms of efficacy and safety.

摘要

药物推荐旨在根据患者的电子健康记录 (EHR) 提供药物组合,这是医疗保健中的一项基本任务。现有的方法要么基于 EHR 提供建议,要么提供具有药物相互作用 (DDI) 知识的模型来实现 DDI 减少。然而,前者模型化了患者的健康史,但忽略了不良的 DDI,而后者缺乏对患者健康记录的挖掘,导致推荐准确性较低。因此,本研究有助于研究考虑药物相互作用效应并对患者既往病史进行建模的个性化药物推荐。在本文中,提出了一种基于距离和图对比学习 (DGCL) 的框架。具体来说,我们开发了一个用于临床记录学习的两阶段神经网络模块。我们提出了距离检测损失来模拟当前病例和历史记录的输出分布之间的差异。在 DDI 识别和控制任务中,DGCL 提出了一种图对比学习方法,以联合训练 DDI 知识图和电子记录图,从而有效控制推荐药物的 DDI 水平。通过在 MIMIC-III 数据集上与几个基线进行性能比较,DGCL 在疗效和安全性方面优于其他模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验