Suppr超能文献

用于性质预测的受力场启发的分子表示学习

Force field-inspired molecular representation learning for property prediction.

作者信息

Ren Gao-Peng, Yin Yi-Jian, Wu Ke-Jun, He Yuchen

机构信息

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Institute of Zhejiang University-Quzhou, Quzhou, 324000, China.

出版信息

J Cheminform. 2023 Feb 6;15(1):17. doi: 10.1186/s13321-023-00691-2.

Abstract

Molecular representation learning is a crucial task to accelerate drug discovery and materials design. Graph neural networks (GNNs) have emerged as a promising approach to tackle this task. However, most of them do not fully consider the intramolecular interactions, i.e. bond stretching, angle bending, torsion, and nonbonded interactions, which are critical for determining molecular property. Recently, a growing number of 3D-aware GNNs have been proposed to cope with the issue, while these models usually need large datasets and accurate spatial information. In this work, we aim to design a GNN which is less dependent on the quantity and quality of datasets. To this end, we propose a force field-inspired neural network (FFiNet), which can include all the interactions by incorporating the functional form of the potential energy of molecules. Experiments show that FFiNet achieves state-of-the-art performance on various molecular property datasets including both small molecules and large protein-ligand complexes, even on those datasets which are relatively small and without accurate spatial information. Moreover, the visualization for FFiNet indicates that it automatically learns the relationship between property and structure, which can promote an in-depth understanding of molecular structure.

摘要

分子表示学习是加速药物发现和材料设计的一项关键任务。图神经网络(GNN)已成为解决这一任务的一种很有前景的方法。然而,它们中的大多数并没有充分考虑分子内相互作用,即键伸缩、角弯曲、扭转和非键相互作用,而这些相互作用对于确定分子性质至关重要。最近,越来越多的3D感知GNN被提出来应对这个问题,而这些模型通常需要大量数据集和准确的空间信息。在这项工作中,我们旨在设计一种对数据集的数量和质量依赖性较小的GNN。为此,我们提出了一种受力场启发的神经网络(FFiNet),它可以通过纳入分子势能的函数形式来包含所有相互作用。实验表明,FFiNet在包括小分子和大的蛋白质-配体复合物在内的各种分子性质数据集上都取得了最优性能,即使是在那些相对较小且没有准确空间信息的数据集上。此外,FFiNet的可视化表明它自动学习了性质与结构之间的关系,这有助于深入理解分子结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1b5/9901163/42d77515acbe/13321_2023_691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验