Suppr超能文献

一种用于改进分子性质预测的混合图神经网络方法。

A Hybrid GNN Approach for Improved Molecular Property Prediction.

机构信息

Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Univ Coimbra, Coimbra, Portugal.

出版信息

J Comput Biol. 2024 Nov;31(11):1146-1157. doi: 10.1089/cmb.2023.0452. Epub 2024 Jul 31.

Abstract

The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.

摘要

新药的开发是一项至关重要的努力,它有可能改善人类的健康、福祉和预期寿命。分子性质预测是药物发现的关键步骤,因为它有助于识别潜在的治疗化合物。然而,药物开发的实验方法往往耗时且资源密集,成功率低。为了解决这些限制,深度学习(DL)方法因其能够识别分子数据中的高区分模式而成为一种可行的替代方法。特别是,图神经网络(GNN)可用于处理图结构数据,以识别具有理想分子性质的有前途的药物候选物。这些方法将分子表示为一组节点(原子)和边(化学键)特征,以聚合局部信息进行分子图表示学习。尽管有几种 GNN 框架,但每种方法都有其自身的缺点。虽然某些 GNN 在某些任务中可能表现出色,但在其他任务中可能表现不佳。在这项工作中,我们提出了一种混合方法,该方法结合了不同的基于图的方法,以结合它们的优势并减轻它们的局限性,从而准确预测分子性质。所提出的方法由一个多层混合 GNN 架构组成,该架构集成了多个 GNN 框架,以计算用于分子性质预测的图嵌入。此外,我们在多个基准数据集上进行了广泛的实验,以证明我们的混合方法在很大程度上优于最先进的基于图的模型。重现结果的数据和代码脚本可在存储库 https://github.com/pedro-quesado/HybridGNN 中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验