Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
J Med Chem. 2020 Aug 27;63(16):8749-8760. doi: 10.1021/acs.jmedchem.9b00959. Epub 2019 Aug 27.
Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for the rising amounts of data, but the gap between what these neural networks learn and what human beings can comprehend is growing. Moreover, this gap may induce distrust and restrict deep learning applications in practice. Here, we introduce a new graph neural network architecture called Attentive FP for molecular representation that uses a graph attention mechanism to learn from relevant drug discovery data sets. We demonstrate that Attentive FP achieves state-of-the-art predictive performances on a variety of data sets and that what it learns is interpretable. The feature visualization for Attentive FP suggests that it automatically learns nonlocal intramolecular interactions from specified tasks, which can help us gain chemical insights directly from data beyond human perception.
寻找具有良好药理、毒理和药代动力学性质的化学物质仍然是药物发现的一项艰巨挑战。深度学习为我们提供了强大的工具来构建适合不断增加的数据量的预测模型,但这些神经网络学习的内容和人类可以理解的内容之间的差距正在扩大。此外,这种差距可能会导致不信任,并限制深度学习在实践中的应用。在这里,我们引入了一种新的图神经网络架构,称为 Attentive FP,用于分子表示,它使用图注意力机制从相关的药物发现数据集进行学习。我们证明 Attentive FP 在各种数据集上实现了最先进的预测性能,并且它所学习的内容是可解释的。Attentive FP 的特征可视化表明,它可以自动从指定任务中学习非局部分子内相互作用,这可以帮助我们直接从超出人类感知的数据中获得化学见解。