Suppr超能文献

生物属性本体论(OBA)——生命科学的计算特征

The Ontology of Biological Attributes (OBA) - Computational Traits for the Life Sciences.

作者信息

Stefancsik Ray, Balhoff James P, Balk Meghan A, Ball Robyn, Bello Susan M, Caron Anita R, Chessler Elissa, de Souza Vinicius, Gehrke Sarah, Haendel Melissa, Harris Laura W, Harris Nomi L, Ibrahim Arwa, Koehler Sebastian, Matentzoglu Nicolas, McMurry Julie A, Mungall Christopher J, Munoz-Torres Monica C, Putman Tim, Robinson Peter, Smedley Damian, Sollis Elliot, Thessen Anne E, Vasilevsky Nicole, Walton David O, Osumi-Sutherland David

机构信息

European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.

Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA.

出版信息

bioRxiv. 2023 Jan 27:2023.01.26.525742. doi: 10.1101/2023.01.26.525742.

Abstract

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

摘要

现有的表型本体最初是为了表示那些相对于野生型或其他参照以特征状态表现出来的表型而开发的。然而,这些本体并不包括全基因组关联研究(GWAS)注释、数量性状位点(QTL)定位或任何以群体为重点的可测量性状数据所需的表型性状或属性类别。此外,即使没有任何基因改变,基因表达对环境干扰的响应变化也可能与特定的生物学属性相关。将性状和生物学属性信息与日益增多的化学、环境和生物学数据相结合,极大地促进了计算分析,并且与生物医学和临床应用也高度相关。生物学属性本体(OBA)是一个形式化的、与物种无关的可互操作表型性状类别的集合,旨在发挥数据整合的作用。OBA是一个用于可观察属性的标准化表示框架,这些属性是生物实体、生物体或生物体部分的特征。OBA具有模块化设计,为用户和数据整合者提供了诸多益处,包括基于从细胞、解剖学和其他相关实体的特定领域本体得出的逻辑推理对性状术语进行自动且有意义的分类。OBA中的逻辑公理还提供了一座此前缺失的桥梁,能够在计算上把孟德尔表型与GWAS和数量性状联系起来。OBA中的术语组件提供语义链接,并实现跨专业研究社区边界的知识和数据整合,从而打破信息孤岛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba48/9900877/c62ed6c4ad50/nihpp-2023.01.26.525742v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验