Park Kwangmoon, Keleş Sündüz
Department of Statistics, University of Wisconsin, Madison, WI, USA, 53706.
Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA, 53726.
J Am Stat Assoc. 2024;119(548):2464-2477. doi: 10.1080/01621459.2024.2358557. Epub 2024 Jun 26.
Emerging single cell technologies that simultaneously capture long-range interactions of genomic loci together with their DNA methylation levels are advancing our understanding of three-dimensional genome structure and its interplay with the epigenome at the single cell level. While methods to analyze data from single cell high throughput chromatin conformation capture (scHi-C) experiments are maturing, methods that can jointly analyze multiple single cell modalities with scHi-C data are lacking. Here, we introduce Muscle, a semi-nonnegative joint decomposition of Multiple single cell tensors, to jointly analyze 3D conformation and DNA methylation data at the single cell level. Muscle takes advantage of the inherent tensor structure of the scHi-C data, and integrates this modality with DNA methylation. We developed an alternating least squares algorithm for estimating Muscle parameters and established its optimality properties. Parameters estimated by Muscle directly align with the key components of the downstream analysis of scHi-C data in a cell type specific manner. Evaluations with data-driven experiments and simulations demonstrate the advantages of the joint modeling framework of Muscle over single modality modeling and a baseline multi modality modeling for cell type delineation and elucidating associations between modalities. Muscle is publicly available at https://github.com/keleslab/muscle.
新兴的单细胞技术能够同时捕捉基因组位点的长程相互作用及其DNA甲基化水平,这正在推动我们在单细胞水平上对三维基因组结构及其与表观基因组相互作用的理解。虽然分析单细胞高通量染色质构象捕获(scHi-C)实验数据的方法正在成熟,但缺乏能够将多个单细胞模态与scHi-C数据联合分析的方法。在这里,我们介绍了Muscle,一种多单细胞张量的半非负联合分解方法,用于在单细胞水平上联合分析三维构象和DNA甲基化数据。Muscle利用scHi-C数据固有的张量结构,并将这种模态与DNA甲基化整合。我们开发了一种交替最小二乘算法来估计Muscle参数,并建立了其最优性性质。Muscle估计的参数以细胞类型特异性方式直接与scHi-C数据下游分析的关键成分对齐。通过数据驱动的实验和模拟进行的评估表明,Muscle的联合建模框架相对于单模态建模和用于细胞类型划分以及阐明模态间关联的基线多模态建模具有优势。Muscle可在https://github.com/keleslab/muscle上公开获取。