Schneider-Mizell Casey M, Bodor Agnes L, Brittain Derrick, Buchanan JoAnn, Bumbarger Daniel J, Elabbady Leila, Gamlin Clare, Kapner Daniel, Kinn Sam, Mahalingam Gayathri, Seshamani Sharmishtaa, Suckow Shelby, Takeno Marc, Torres Russel, Yin Wenjing, Dorkenwald Sven, Bae J Alexander, Castro Manuel A, Halageri Akhilesh, Jia Zhen, Jordan Chris, Kemnitz Nico, Lee Kisuk, Li Kai, Lu Ran, Macrina Thomas, Mitchell Eric, Mondal Shanka Subhra, Mu Shang, Nehoran Barak, Popovych Sergiy, Silversmith William, Turner Nicholas L, Wong William, Wu Jingpeng, Reimer Jacob, Tolias Andreas S, Seung H Sebastian, Reid R Clay, Collman Forrest, Maçarico da Costa Nuno
Allen Institute for Brain Science, Seattle, WA.
Princeton Neuroscience Institute, Princeton University, NJ.
bioRxiv. 2024 Jan 6:2023.01.23.525290. doi: 10.1101/2023.01.23.525290.
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.
哺乳动物的皮质具有种类繁多的神经元细胞类型,每种类型都具有独特的解剖学、分子和功能特性。突触连接有力地塑造了每种细胞类型参与皮质回路的方式,但在不同细胞类型的分辨率下绘制连接规则仍然很困难。在这里,我们使用毫米级体积电子显微镜来研究跨越小鼠视觉皮质所有层的1352个细胞的密集分割神经元群体中所有抑制性神经元的连接性,生成了一个包含超过70000个突触抑制性连接的布线图。我们采用受经典神经解剖学启发的数据驱动方法,根据树突区室和其他抑制性细胞的相对靶向对抑制性神经元进行分类,并基于形态学和突触输入特性开发了一种新的兴奋性神经元分类方法。抑制性细胞之间的突触连接揭示了一类除了熟悉的亚类之外,靶向篮状细胞的新型去抑制性特化细胞。对兴奋性神经元上抑制性连接的分析发现了广泛的特异性,许多中间神经元对某些亚群表现出不同的靶向,这些亚群在空间上与其他潜在靶点相互交织。抑制性靶向被组织成“基序组”,即共同靶向同一兴奋性靶点的胞体周围和树突区室的不同细胞集合。总的来说,我们的分析确定了皮质抑制的新组织原则,并将作为将现代多模态神经元图谱与皮质布线图联系起来的基础。