Suppr超能文献

皮层和丘脑对小鼠运动皮层抑制性神经元传入的组织。

Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex.

机构信息

University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.

National Institute of Mental Health, Bethesda, Maryland 20892.

出版信息

J Neurosci. 2022 Oct 26;42(43):8095-8112. doi: 10.1523/JNEUROSCI.0950-22.2022. Epub 2022 Sep 14.

Abstract

Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits. M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.

摘要

皮质内抑制作用于运动皮层(M1),调节运动和运动学习。如果皮质和丘脑输入针对不同层的不同抑制性细胞类型,那么这些传入可能在调节 M1 输出方面发挥不同的作用。使用雄性和雌性小鼠,我们使用单突触狂犬病毒追踪技术量化了两种主要的 M1 中间神经元,即 parvalbumin+(PV+)细胞和 somatostatin+(SOM+)细胞的输入。然后,我们比较了基于来自感觉皮层和丘脑的突触强度的解剖和功能连接。功能上,每个输入都以独特的层状分布兴奋 M1 中间神经元。不同的中间神经元类型以独特的、互补的方式被兴奋,这表明前馈抑制是通过不同的回路选择性地进行的。具体而言,体感皮层(S1)输入主要靶向上层(L2/3)的 PV+神经元,但 somatosensory thalamus [后核(PO)]输入靶向中层(L5)的 PV+神经元。相反,丘脑输入到 SOM+神经元的输入与到 PV+神经元的输入相等。因此,长程兴奋性输入以区域和细胞类型特异性的方式靶向抑制性神经元,与邻近的锥体神经元输入形成对比。与提供皮质中通用抑制音调的前馈抑制相反,回路被有选择地组织以募集与传入兴奋性回路匹配的抑制。M1 整合感觉信息和额皮质输入以计划和控制运动。尽管已经描述了兴奋性细胞的输入,但这些输入驱动特定类型的 M1 中间神经元的突触回路尚不清楚。使用狂犬病毒追踪的解剖学结果和突触强度的生理量化表明,两种主要的抑制性细胞(PV+和 SOM+中间神经元)都接收大量皮质和丘脑输入,而与感觉区的中间神经元形成对比(其中丘脑输入强烈偏向 PV+中间神经元)。此外,研究的每个输入都以不同的方式靶向 PV+和 SOM+中间神经元,这表明存在用于募集前馈抑制的单独的、特定的回路。

相似文献

3
Brain-Wide Maps of Synaptic Input to Cortical Interneurons.皮质中间神经元突触输入的全脑图谱。
J Neurosci. 2016 Apr 6;36(14):4000-9. doi: 10.1523/JNEUROSCI.3967-15.2016.

引用本文的文献

本文引用的文献

2
Cellular anatomy of the mouse primary motor cortex.小鼠初级运动皮层的细胞解剖结构。
Nature. 2021 Oct;598(7879):159-166. doi: 10.1038/s41586-021-03970-w. Epub 2021 Oct 6.
4
5
Hierarchical organization of cortical and thalamic connectivity.皮质和丘脑连接的层次组织。
Nature. 2019 Nov;575(7781):195-202. doi: 10.1038/s41586-019-1716-z. Epub 2019 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验