Suppr超能文献

强阴离子排斥作用促进 P2 型层状氧化物中钠离子的快速动力学。

Strong Anionic Repulsion for Fast Na Kinetics in P2-Type Layered Oxides.

机构信息

Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Apr;10(10):e2206367. doi: 10.1002/advs.202206367. Epub 2023 Feb 7.

Abstract

An intriguing mechanism for enabling fast Na kinetics during oxygen redox (OR) is proposed to produce high-power-density cathodes for sodium-ion batteries (SIBs) based on the P2-type oxide models, Na [Mn Ni ]O (NMNO) and Na [Ti Mn Ni ]O (NTMNO) using the "potential pillar" effect. The critical structural parameter of NTMNO lowers the Na migration barrier in the desodiated state because the electrostatic repulsion of O(2p)O(2p) that occurs between transition metal layers is combined with the chemically stiff Ti (3d)O(2p) bond to locally retain the strong repulsion effect. The NTMNO interlayer distance moderately decreases upon charging with oxygen oxidation, whereas that of NMNO decreases at a much faster rate, which can be explained by the dependence of OR activity on the coordination environment. Fundamental electrochemical experiments clearly indicate that the Ti doping of the bare material significantly improves its rate capability during OR, and detailed electrochemical and structural analyses show much faster Na kinetics for NTMNO than for NMNO. A systematic comparison of the two cathode oxides based on experiments and first-principles calculations establishes the "potential pillar" concept of not only improving the sluggish Na kinetics upon OR reaction but also harnessing the full potential of the anionic redox for high-power-density SIBs.

摘要

提出了一种有趣的机制,即利用“势垒柱”效应,通过 P2 型氧化物模型 Na[MnNi]O(NMNO)和 Na[TiMnNi]O(NTMNO),为钠离子电池(SIBs)产生高能密度的阴极,从而实现氧氧化还原(OR)过程中钠离子的快速动力学。NTMNO 的关键结构参数降低了去钠化状态下钠离子的迁移势垒,因为在过渡金属层之间发生的 O(2p)O(2p)静电排斥与化学刚性 Ti(3d)O(2p)键结合,从而局部保留了强烈的排斥效应。在氧氧化过程中充电时,NTMNO 的层间距适度减小,而 NMNO 的层间距减小速度要快得多,这可以通过 OR 活性对配位环境的依赖性来解释。基础电化学实验清楚地表明,裸材料的钛掺杂显著提高了其在 OR 过程中的倍率性能,详细的电化学和结构分析表明,NTMNO 的钠离子动力学比 NMNO 快得多。基于实验和第一性原理计算对两种阴极氧化物的系统比较,确立了“势垒柱”的概念,不仅改善了 OR 反应中缓慢的钠离子动力学,而且还充分利用了阴离子氧化还原的全部潜力,为高能密度 SIBs 提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d5/10074072/6bcdf7ad2293/ADVS-10-2206367-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验