Suppr超能文献

消除P2型钠离子阴极中稳定高压结构的氧电荷补偿

Unblocking Oxygen Charge Compensation for Stabilized High-Voltage Structure in P2-Type Sodium-Ion Cathode.

作者信息

Zhu He, Yao Zhenpeng, Zhu Hekang, Huang Yalan, Zhang Jian, Li Cheng Chao, Wiaderek Kamila M, Ren Yang, Sun Cheng-Jun, Zhou Hua, Fan Longlong, Chen Yanan, Xia Hui, Gu Lin, Lan Si, Liu Qi

机构信息

Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

出版信息

Adv Sci (Weinh). 2022 May;9(16):e2200498. doi: 10.1002/advs.202200498. Epub 2022 Mar 28.

Abstract

Layered transition-metal (TM) oxides are ideal hosts for Li charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na Ni Mn O cathode material is put forward to activate charge compensation through highly hybridized O TM covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.

摘要

层状过渡金属(TM)氧化物是锂电荷载体的理想宿主,这主要归功于氧电荷补偿的发生,它在高压下稳定了层状结构。因此,在钠层状氧化物中实现电荷补偿是延长钠离子电池循环寿命的一项引人入胜的任务。在此,针对一种典型的P2-NaNiMnO阴极材料提出了一种Ti/Mg共掺杂策略,以通过高度杂化的OTM共价键激活电荷补偿。通过这种方式,在深度充电时层间OO静电排斥减弱,这强烈影响了系统总能量,将显著的P2-O2层间收缩转变为适度的固溶体型演化。相应地,共掺杂阴极材料的循环稳定性比原始样品有了显著提高。本研究开启了一种通过合理的结构设计耦合电化学反应来优化钠层状阴极的前瞻性方法,这可以扩展到广泛的电池研究中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df9e/9165493/89581f2235d4/ADVS-9-2200498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验