Suppr超能文献

基于 k- 分馏分析与 cgMLST 和 SNP 核心基因组分析比较,检测耐万古霉素肠球菌传播:德国柏林不同医院和医院网络常规暴发分析结果。

Split k-mer analysis compared to cgMLST and SNP-based core genome analysis for detecting transmission of vancomycin-resistant enterococci: results from routine outbreak analyses across different hospitals and hospitals networks in Berlin, Germany.

机构信息

Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany.

出版信息

Microb Genom. 2023 Jan;9(1). doi: 10.1099/mgen.0.000937.

Abstract

The increase of Vancomycin-resistant (VREfm) in recent years has been partially attributed to the rise of specific clonal lineages, which have been identified throughout Germany. To date, there is no gold standard for the interpretation of genomic data for outbreak analyses. New genomic approaches such as split k-mer analysis (SKA) could support cluster attribution for routine outbreak investigation. The aim of this project was to investigate frequent clonal lineages of VREfm identified during suspected outbreaks across different hospitals, and to compare genomic approaches including SKA in routine outbreak investigation. We used routine outbreak laboratory data from seven hospitals and three different hospital networks in Berlin, Germany. Short-read libraries were sequenced on the Illumina MiSeq system. We determined clusters using the published -cgMLST scheme (threshold ≤20 alleles), and assigned sequence and complex types (ST, CT), using the Ridom SeqSphere+ software. For each cluster as determined by cgMLST, we used pairwise core-genome SNP-analysis and SKA at thresholds of ten and seven SNPs, respectively, to further distinguish cgMLST clusters. In order to investigate clinical relevance, we analysed to what extent epidemiological linkage backed the clusters determined with different genomic approaches. Between 2014 and 2021, we sequenced 693 VREfm strains, and 644 (93 %) were associated within cgMLST clusters. More than 74 % (=475) of the strains belonged to the six largest cgMLST clusters, comprising ST117, ST78 and ST80. All six clusters were detected across several years and hospitals without apparent epidemiological links. Core SNP analysis identified 44 clusters with a median cluster size of three isolates (IQR 2-7, min-max 2-63), as well as 197 singletons (41.4 % of 475 isolates). SKA identified 67 clusters with a median cluster size of two isolates (IQR 2-4, min-max 2-19), and 261 singletons (54.9 % of 475 isolates). Of the isolate pairs attributed to clusters, 7 % (=3064/45 596) of pairs in clusters determined by standard cgMLST, 15 % (=1222/8500) of pairs in core SNP-clusters and 51 % (=942/1880) of pairs in SKA-clusters showed epidemiological linkage. The proportion of epidemiological linkage differed between sequence types. For VREfm, the discriminative ability of the widely used cgMLST based approach at ≤20 alleles difference was insufficient to rule out hospital outbreaks without further analytical methods. Cluster assignment guided by core genome SNP analysis and the reference free SKA was more discriminative and correlated better with obvious epidemiological linkage, at least recently published thresholds (ten and seven SNPs, respectively) and for frequent STs. Besides higher overall discriminative power, the whole-genome approach implemented in SKA is also easier and faster to conduct and requires less computational resources.

摘要

近年来,万古霉素耐药(VREfm)的增加部分归因于特定克隆谱系的出现,这些谱系已在德国各地被发现。迄今为止,对于爆发分析的基因组数据解释还没有金标准。新的基因组方法,如分裂 k-mer 分析(SKA),可以支持常规爆发调查的聚类归因。本项目旨在调查不同医院疑似爆发期间发现的 VREfm 的常见克隆谱系,并比较包括 SKA 在内的常规爆发调查中的基因组方法。我们使用了来自德国柏林的七家医院和三个不同医院网络的常规爆发实验室数据。短读长文库在 Illumina MiSeq 系统上进行测序。我们使用已发布的 -cgMLST 方案(阈值≤20 个等位基因)确定聚类,并使用 Ridom SeqSphere+软件确定序列和复杂型(ST、CT)。对于 cgMLST 确定的每个聚类,我们使用基于核心基因组 SNP 分析的成对分析和分别为 10 和 7 个 SNP 的 SKA,进一步区分 cgMLST 聚类。为了研究临床相关性,我们分析了不同基因组方法确定的聚类在多大程度上与流行病学联系相关。2014 年至 2021 年,我们共测序了 693 株 VREfm 菌株,其中 644 株(93%)与 cgMLST 聚类相关。超过 74%(=475)的菌株属于六个最大的 cgMLST 聚类,包括 ST117、ST78 和 ST80。所有六个聚类均在数年和医院之间没有明显的流行病学联系的情况下被检测到。核心 SNP 分析确定了 44 个聚类,聚类中位数为 3 个分离株(IQR 2-7,min-max 2-63),还有 197 个单倍型(475 个分离株的 41.4%)。SKA 确定了 67 个聚类,聚类中位数为 2 个分离株(IQR 2-4,min-max 2-19),还有 261 个单倍型(475 个分离株的 54.9%)。在归因于聚类的分离株对中,标准 cgMLST 确定的聚类中 7%(=3064/45596)的分离株对、核心 SNP 聚类中 15%(=1222/8500)的分离株对和 SKA 聚类中 51%(=942/1880)的分离株对具有流行病学联系。序列类型之间的流行病学联系比例不同。对于 VREfm,基于广泛使用的 cgMLST 方法的区分能力在≤20 个等位基因差异时不足以排除医院爆发,而无需进一步的分析方法。基于核心基因组 SNP 分析和无参考 SKA 的聚类分配更具区分力,并且与明显的流行病学联系相关性更好,至少在最近公布的阈值(分别为 10 和 7 个 SNP)和常见的 ST 中是如此。除了具有更高的整体区分能力外,实施在 SKA 中的全基因组方法在操作上也更容易、更快,并且需要更少的计算资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2996/9973845/aa7592bd5fda/mgen-9-937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验