Suppr超能文献

基于时间序列放射组学的主动监测患者前列腺癌进展预测。

Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance.

机构信息

Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.

Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, Italy.

出版信息

Eur Radiol. 2023 Jun;33(6):3792-3800. doi: 10.1007/s00330-023-09438-x. Epub 2023 Feb 7.

Abstract

Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. KEY POINTS: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.

摘要

磁共振成像(MRI)随访在前列腺癌(PCa)主动监测(AS)中是一项重要的评估工具。然而,它对预测后续组织病理学肿瘤进展的敏感性仅为中等,这部分是由于其临床报告的主观性以及各中心和阅片者之间的差异。在这项研究中,我们使用长短期记忆(LSTM)递归神经网络(RNN)开发了一种时间序列放射组学(TSR)预测模型,该模型分析了 76 例 AS 患者 297 次扫描的肿瘤衍生放射组学特征的纵向变化,其中 28 例患者有组织病理学 PCa 进展,48 例患者疾病稳定。通过留一交叉验证(LOOCV),我们发现,结合 TSR 和 PSA 密度的基于 LSTM 的模型(AUC 为 0.86 [95%CI:0.78-0.94])显著优于结合常规 delta-放射组学和 delta-PSA 密度的模型(0.75 [0.64-0.87];p=0.048),与使用前列腺癌放射变化连续评估(PRECISE)评分系统进行的专家级连续 MRI 分析的性能相当(0.84 [0.76-0.93];p=0.710)。因此,所提出的 TSR 框架为 PCa AS 中的标准 MRI 评估提供了一种可行的定量工具。它还提出了一种新的串行图像分析方法,可用于支持多种场景中的临床决策,从连续疾病监测到治疗反应评估。关键点:•LSTM RNN 可用于使用肿瘤衍生放射组学特征和 PSA 密度的时间序列变化来预测 PCa AS 的结果。•与仅在 delta-radiomics 框架内使用两个时间点相比,使用所有可用的 TSR 特征和连续 PSA 密度可显著提高预测性能。•TSR 的概念可应用于涉及串行成像的其他临床场景,为人工智能驱动的放射学研究开辟了一个新领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b6/10182165/8d4cc14ccdc9/330_2023_9438_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验