Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
Sci Rep. 2021 Jun 21;11(1):12917. doi: 10.1038/s41598-021-92341-6.
Nearly half of patients with prostate cancer (PCa) harbour low- or intermediate-risk disease considered suitable for active surveillance (AS). However, up to 44% of patients discontinue AS within the first five years, highlighting the unmet clinical need for robust baseline risk-stratification tools that enable timely and accurate prediction of tumour progression. In this proof-of-concept study, we sought to investigate the added value of MRI-derived radiomic features to standard-of-care clinical parameters for improving baseline prediction of PCa progression in AS patients. Tumour T-weighted imaging (T2WI) and apparent diffusion coefficient radiomic features were extracted, with rigorous calibration and pre-processing methods applied to select the most robust features for predictive modelling. Following leave-one-out cross-validation, the addition of T2WI-derived radiomic features to clinical variables alone improved the area under the ROC curve for predicting progression from 0.61 (95% confidence interval [CI] 0.481-0.743) to 0.75 (95% CI 0.64-0.86). These exploratory findings demonstrate the potential benefit of MRI-derived radiomics to add incremental benefit to clinical data only models in the baseline prediction of PCa progression on AS, paving the way for future multicentre studies validating the proposed model and evaluating its impact on clinical outcomes.
将近一半的前列腺癌(PCa)患者患有低风险或中风险疾病,适合主动监测(AS)。然而,高达 44%的患者在最初五年内停止了 AS,这突显了对强大的基线风险分层工具的临床需求,这些工具能够及时、准确地预测肿瘤进展。在这项概念验证研究中,我们试图研究 MRI 衍生的放射组学特征对标准护理临床参数的附加价值,以改善 AS 患者中 PCa 进展的基线预测。提取了肿瘤 T2 加权成像(T2WI)和表观扩散系数的放射组学特征,并应用严格的校准和预处理方法来选择用于预测模型的最稳健特征。在进行留一交叉验证后,仅将 T2WI 衍生的放射组学特征添加到临床变量中,即可提高预测进展的 ROC 曲线下面积,从 0.61(95%置信区间 [CI] 0.481-0.743)提高到 0.75(95% CI 0.64-0.86)。这些探索性发现表明,MRI 衍生的放射组学有可能为临床数据仅模型在 AS 中 PCa 进展的基线预测中增加额外的益处,为未来验证所提出模型并评估其对临床结果的影响的多中心研究铺平了道路。