Suppr超能文献

聚化姜黄素缓慢降解聚合物涂层的研制用于皮层内微电极。

Development of a Slow-Degrading Polymerized Curcumin Coating for Intracortical Microelectrodes.

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy 12180-3590, New York, United States.

Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy 12180-3590, New York, United States.

出版信息

ACS Appl Bio Mater. 2023 Feb 20;6(2):806-818. doi: 10.1021/acsabm.2c00969. Epub 2023 Feb 7.

Abstract

Intracortical microelectrodes are used with brain-computer interfaces to restore lost limb function following nervous system injury. While promising, recording ability of intracortical microelectrodes diminishes over time due, in part, to neuroinflammation. As curcumin has demonstrated neuroprotection through anti-inflammatory activity, we fabricated a 300 nm-thick intracortical microelectrode coating consisting of a polyurethane copolymer of curcumin and polyethylene glycol (PEG), denoted as poly(curcumin-PEG carbamate) (PCPC). The uniform PCPC coating reduced silicon wafer hardness by two orders of magnitude and readily absorbed water within minutes, demonstrating that the coating is soft and hydrophilic in nature. Using an in vitro release model, curcumin eluted from the PCPC coating into the supernatant over 1 week; the majority of the coating was intact after an 8-week incubation in buffer, demonstrating potential for longer term curcumin release and softness. Assessing the efficacy of PCPC within a rat intracortical microelectrode model in vivo, there were no significant differences in tissue inflammation, scarring, neuron viability, and myelin damage between the uncoated and PCPC-coated probes. As the first study to implant nonfunctional probes with a polymerized curcumin coating, we have demonstrated the biocompatibility of a PCPC coating and presented a starting point in the design of poly(pro-curcumin) polymers as coating materials for intracortical electrodes.

摘要

皮层内微电极与脑机接口一起使用,以恢复神经系统损伤后失去的肢体功能。虽然很有前景,但由于神经炎症等原因,皮层内微电极的记录能力会随时间下降。由于姜黄素具有通过抗炎活性发挥神经保护作用,我们制备了一种 300nm 厚的皮层内微电极涂层,由姜黄素和聚乙二醇(PEG)的聚氨酯共聚物组成,记为聚(姜黄素-PEG 碳酸酯)(PCPC)。均匀的 PCPC 涂层使硅片的硬度降低了两个数量级,并且在几分钟内即可吸收水分,这表明涂层具有柔软和亲水的性质。使用体外释放模型,姜黄素在 1 周内从 PCPC 涂层中洗脱到上清液中;在缓冲液中孵育 8 周后,大部分涂层仍然完整,这表明姜黄素具有潜在的更长时间释放和柔软度。在体内大鼠皮层内微电极模型中评估 PCPC 的功效,未涂层和 PCPC 涂层探针之间的组织炎症、瘢痕形成、神经元活力和髓鞘损伤没有显著差异。作为第一个将聚合姜黄素涂层应用于非功能性探针的研究,我们已经证明了 PCPC 涂层的生物相容性,并为作为皮层内电极涂层材料的聚(原姜黄素)聚合物的设计提供了一个起点。

相似文献

4
Deployable, liquid crystal elastomer-based intracortical probes.可展开的、基于液晶弹性体的皮层内探针。
Acta Biomater. 2020 Jul 15;111:54-64. doi: 10.1016/j.actbio.2020.04.032. Epub 2020 May 17.
10
Ultrasoft microwire neural electrodes improve chronic tissue integration.超软微丝神经电极可改善慢性组织整合。
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验