Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110.
Center for Science and Engineering of Living Systems, Washington University in St. Louis, Saint Louis, MO 63130.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2215371120. doi: 10.1073/pnas.2215371120. Epub 2023 Feb 7.
The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.
载脂蛋白 E(ApoE)的 ε4-等位基因变异是阿尔茨海默病最强的遗传风险因素,尽管它与中性等位基因 ApoE3 仅相差一个氨基酸取代。虽然 ApoE4 影响斑块和神经原纤维缠结的形成,但由于结构信息有限,其致病性的结构决定因素仍未确定。以前的研究导致了 C 末端区域相对于不同异构体的 N 末端结构域的定位的模型产生冲突,主要是因为数据可能因存在异质寡聚物而受到混淆。在这里,我们结合使用单分子光谱和分子动力学模拟来构建单体 ApoE4 的原子细节模型,并研究脂质结合的影响。重要的是,我们的方法克服了以前的限制,使我们能够在仅存在单体的皮摩尔浓度下工作。我们的数据表明,ApoE4 比以前想象的更加无序和伸展,并且在结合脂质后仍然保持显著的构象异质性。比较三种主要异构体(ApoE4、ApoE3 和 ApoE2)的 N 和 C 末端结构域的接近程度表明,所有异构体在其单体形式下都保持异质构象,ApoE2 采用稍微更紧凑的集合。总体而言,这些数据为理解 ApoE4 如何与该蛋白的非致病性和保护性变体不同提供了基础。