Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
Ministry of Health, Singapore.
PLoS Comput Biol. 2023 Feb 7;19(2):e1010892. doi: 10.1371/journal.pcbi.1010892. eCollection 2023 Feb.
Upper respiratory tract infections (URTIs) represent a large strain on primary health resources. To mitigate URTI transmission and public health burdens, it is important to pre-empt and provide forward guidance on URTI burden, while taking into account various facets which influence URTI transmission. This is so that appropriate public health measures can be taken to mitigate strain on primary care resources. This study describes a new approach to forecasting URTIs which can be used for national public health resource planning. Specifically, using environmental and disease data comprising more than 1000 dimensions, we developed sub-models which optimizes model explainability, in-sample model fit, predictive accuracy and combines many weaker predictors over a 2-month time horizon to generate direct, point forecasts over a 1-8 week ahead forecast horizon. Predictive performance was evaluated using rolling out-of-sample forecast assessment within both periods with/without structural breaks in transmission over the period of 2012-2022. We showed that forecast combinations of 5 other forecasting models had better and more consistent predictive performance than other modelling approaches, over periods with and without structural breaks in transmission dynamics. Furthermore, epidemiological analysis on high dimensional data was enabled using post-selection inference, to show the dynamic association between lower temperature, increases in past relative humidity and absolute humidity and increased URTIs attendance. The methods proposed can be used for outbreak preparedness and guide healthcare resource planning, in both stable periods of transmission and periods where structural breaks in data occur.
上呼吸道感染(URTIs)对初级卫生资源构成了巨大压力。为了减轻 URTI 的传播和公共卫生负担,重要的是要预测和提供 URTI 负担的前瞻性指导,同时考虑影响 URTI 传播的各个方面。这样才能采取适当的公共卫生措施来减轻初级保健资源的压力。本研究描述了一种新的 URTI 预测方法,可用于国家公共卫生资源规划。具体来说,我们使用包含超过 1000 个维度的环境和疾病数据,开发了子模型,这些子模型优化了模型的可解释性、样本内模型拟合度、预测准确性,并在 2 个月的时间范围内结合了许多较弱的预测因素,以在 1-8 周的预测期内生成直接的点预测。使用 2012-2022 年期间传输过程中的结构断裂来评估滚动样本外预测评估在这两个时期内的预测性能。我们表明,与其他建模方法相比,在传输动力学存在和不存在结构断裂的时期,5 种其他预测模型的预测组合具有更好和更一致的预测性能。此外,使用后选择推理可以对高维数据进行流行病学分析,以显示较低温度、过去相对湿度和绝对湿度增加与 URTI 就诊次数增加之间的动态关联。所提出的方法可用于爆发准备和指导医疗保健资源规划,无论是在传输稳定时期还是在数据出现结构断裂时期。