Suppr超能文献

美国季节性流感爆发的个体预测与超级集合预测

Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States.

作者信息

Yamana Teresa K, Kandula Sasikiran, Shaman Jeffrey

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2017 Nov 6;13(11):e1005801. doi: 10.1371/journal.pcbi.1005801. eCollection 2017 Nov.

Abstract

Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time.

摘要

近期研究已产生了多种预测季节性流感爆发的方法。然而,相互竞争的预测方法在预测结果上的差异可能会限制它们在决策中的应用。在此,我们提出一种使用贝叶斯模型平均法来调和这些差异的方法。我们使用21种不同的预测方法,对48个州和95个城市的季节性流感爆发的高峰时间、高峰发病率和总发病率进行了回顾性预测,并将这些个体预测结果进行合并,以创建加权平均超级集合预测。我们根据地理位置、预测时间和流感季节,比较了这些个体预测方法和超级集合预测方法的相对性能。我们发现,总体而言,超级集合预测比任何个体预测方法都更准确,且不太容易产生较差的预测结果。此外,我们发现,当根据预测或地理位置的特征对超级集合权重进行分层时,这些优势会增加。这些发现表明,不同的相互竞争的流感预测系统可以被整合为一个更准确的单一预测产品,以便实时进行业务交付。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d5d/5690687/e9eecd87888c/pcbi.1005801.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验