Suppr超能文献

基于 GeoDetector 和 LSTM 模型的中国广西手足口病预测方法。

A method for hand-foot-mouth disease prediction using GeoDetector and LSTM model in Guangxi, China.

机构信息

Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China.

Institute of Urban Big Data, College of Environment and Planning, Henan University, Kaifeng, Henan, 475004, China.

出版信息

Sci Rep. 2019 Nov 29;9(1):17928. doi: 10.1038/s41598-019-54495-2.

Abstract

Hand-foot-mouth disease (HFMD) is a common infectious disease in children and is particularly severe in Guangxi, China. Meteorological conditions are known to play a pivotal role in the HFMD. Previous studies have reported numerous models to predict the incidence of HFMD. In this study, we proposed a new method for the HFMD prediction using GeoDetector and a Long Short-Term Memory neural network (LSTM). The daily meteorological factors and HFMD records in Guangxi during 2014-2015 were adopted. First, potential risk factors for the occurrence of HFMD were identified based on the GeoDetector. Then, region-specific prediction models were developed in 14 administrative regions of Guangxi, China using an optimized three-layer LSTM model. Prediction results (the R-square ranges from 0.39 to 0.71) showed that the model proposed in this study had a good performance in HFMD predictions. This model could provide support for the prevention and control of HFMD. Moreover, this model could also be extended to the time series prediction of other infectious diseases.

摘要

手足口病(HFMD)是儿童中常见的传染病,在中国广西尤为严重。气象条件已知在 HFMD 中起着关键作用。先前的研究已经报道了许多用于预测 HFMD 发病率的模型。在这项研究中,我们提出了一种使用地质探测器和长短期记忆神经网络(LSTM)的 HFMD 预测新方法。采用了 2014-2015 年广西的日常气象因素和 HFMD 记录。首先,基于地质探测器确定了 HFMD 发生的潜在危险因素。然后,使用优化的三层 LSTM 模型,在中国广西的 14 个行政区域开发了特定区域的预测模型。预测结果(R-square 范围从 0.39 到 0.71)表明,本研究提出的模型在 HFMD 预测中具有良好的性能。该模型可为 HFMD 的预防和控制提供支持。此外,该模型还可以扩展到其他传染病的时间序列预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3153/6884467/edf36bb8bbd0/41598_2019_54495_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验