Suppr超能文献

低维金属有机框架结构和电子性质的计算机高通量设计与预测

In Silico High-Throughput Design and Prediction of Structural and Electronic Properties of Low-Dimensional Metal-Organic Frameworks.

作者信息

Zhang Zeyu, Valente Dylan S, Shi Yuliang, Limbu Dil K, Momeni Mohammad R, Shakib Farnaz A

机构信息

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.

Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri─Kansas City, Kansas City, Missouri 64110, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 7. doi: 10.1021/acsami.2c22665.

Abstract

The advent of π-stacked layered metal-organic frameworks (MOFs), which offer electrical conductivity on top of permanent porosity and high surface area, opened up new horizons for designing compact MOF-based devices such as battery electrodes, supercapacitors, and spintronics. Permutation of structural building blocks, including metal nodes and organic linkers, in these electrically conductive (EC) materials, results in new systems with unprecedented and unexplored physical and chemical properties. With the ultimate goal of providing a platform for accelerated material design and discovery, here we lay the foundations for the creation of the first comprehensive database of EC-MOFs with an experimentally guided approach. The first phase of this database, coined EC-MOF/Phase-I, is composed of 1,057 bulk and monolayer structures built by all possible combinations of experimentally reported organic linkers, functional groups, and metal nodes. A high-throughput screening (HTS) workflow is constructed to implement density functional theory calculations with periodic boundary conditions to optimize the structures and calculate some of their most relevant properties. Because research and development in the area of EC-MOFs has long been suffering from the lack of appropriate initial crystal structures, all of the geometries and property data have been made available for the use of the community through an online platform that was developed during the course of this work. This database provides comprehensive physical and chemical data of EC-MOFs as well as the convenience of selecting appropriate materials for specific applications, thus accelerating the design and discovery of EC-MOF-based compact devices.

摘要

π-堆积层状金属有机框架(MOF)的出现,在其永久孔隙率和高比表面积的基础上赋予了导电性,为设计诸如电池电极、超级电容器和自旋电子学等紧凑型MOF基器件开辟了新视野。在这些导电(EC)材料中,包括金属节点和有机连接体在内的结构构建单元的排列,产生了具有前所未有的、未被探索的物理和化学性质的新体系。为了提供一个加速材料设计和发现的平台,我们在此采用实验指导的方法,为创建首个全面的EC-MOF数据库奠定基础。该数据库的第一阶段,即EC-MOF/第一阶段,由1057个本体和单层结构组成,这些结构由实验报道的有机连接体、官能团和金属节点的所有可能组合构建而成。构建了一个高通量筛选(HTS)工作流程,以实施具有周期性边界条件的密度泛函理论计算,来优化结构并计算其一些最相关的性质。由于EC-MOF领域的研发长期以来一直缺乏合适的初始晶体结构,所有的几何结构和性质数据都已通过在这项工作过程中开发的在线平台供学界使用。该数据库提供了EC-MOF的全面物理和化学数据,以及为特定应用选择合适材料的便利,从而加速了基于EC-MOF的紧凑型器件的设计和发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验