Suppr超能文献

使用无监督物理信息深度学习对存在非平稳背景的光谱进行校准。

Calibration of spectra in presence of non-stationary background using unsupervised physics-informed deep learning.

机构信息

Department of Industrial Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy.

出版信息

Sci Rep. 2023 Feb 7;13(1):2156. doi: 10.1038/s41598-023-29371-9.

Abstract

Calibration is a key part of the development of a diagnostic. Standard approaches require the setting up of dedicated experiments under controlled conditions in order to find the calibration function that allows one to evaluate the desired information from the raw measurements. Sometimes, such controlled experiments are not possible to perform, and alternative approaches are required. Most of them aim at extracting information by looking at the theoretical expectations, requiring a lot of dedicated work and usually involving that the outputs are extremely dependent on some external factors, such as the scientist experience. This work presents a possible methodology to calibrate data or, more generally, to extract the information from the raw measurements by using a new unsupervised physics-informed deep learning methodology. The algorithm allows to automatically process the data and evaluate the searched information without the need for a supervised training by looking at the theoretical expectations. The method is examined in synthetic cases with increasing difficulties to test its potentialities, and it has been found that such an approach can also be used in very complex behaviours, where human-drive results may have huge uncertainties. Moreover, also an experimental test has been performed to validate its capabilities, but also highlight the limits of this method, which, of course, requires particular attention and a good knowledge of the analysed phenomena. The results are extremely interesting, and this methodology is believed to be applied to several cases where classic calibration and supervised approaches are not accessible.

摘要

校准是开发诊断的关键部分。标准方法需要在受控条件下设置专门的实验,以找到允许从原始测量中评估所需信息的校准函数。有时,无法进行此类受控实验,需要采用替代方法。它们大多数旨在通过查看理论预期来提取信息,这需要大量专门的工作,并且通常涉及输出非常依赖于一些外部因素,例如科学家的经验。本工作提出了一种可能的方法,通过使用新的无监督物理信息深度学习方法来校准数据,或者更一般地从原始测量中提取信息。该算法允许自动处理数据并通过查看理论预期来评估所搜索的信息,而无需通过监督训练。该方法在具有递增难度的合成情况下进行了检查,以测试其潜力,并且已经发现,这种方法也可以用于非常复杂的行为,在这些行为中,人为驱动的结果可能存在巨大的不确定性。此外,还进行了实验测试以验证其功能,但也强调了该方法的局限性,当然,这需要特别注意和对所分析现象的深入了解。结果非常有趣,相信这种方法适用于经典校准和监督方法无法应用的几种情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ca/9905576/e087580b67b0/41598_2023_29371_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验