Li Fan, Li Jialin, Zheng Junsheng, Tong Yuanbiao, Zhu Huanfeng, Wang Pan, Li Linjun
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China.
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China.
ACS Appl Mater Interfaces. 2023 Feb 7. doi: 10.1021/acsami.2c17513.
Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half-wet poly(dimethylsiloxane) (PDMS) transfer process utilizing the change of adhesion energy with the help of micron-sized water droplets. Using this method, a vertical stacking of the WS/BiSe heterostructure with a straddling band configuration is successfully assembled on a fluorophlogopite substrate. Thanks to the complementary band gaps and high efficiency of interfacial charge transfer, the photodetector based on the heterostructure exhibits a superior responsivity of 109.9 A W for a visible incident light at 473 nm and 26.7 A W for a 1064 nm near-infrared illumination. Such high photoresponsivity of the heterostructure demonstrates that our transfer method not only owns time efficiency but also ensures high quality of the heterointerface. Our study may open new pathways to the fast and massive fabrication of various vertical 2D heterostructures for applications in twistronics/valleytronics and other band engineering devices.
二维(2D)材料异质结构因其有趣且新颖的物理特性而备受关注,这些特性拓展了未来光电子、光伏和纳米电子应用的可能性。在异质结构制造过程中,迫切需要一种便携、快速且具有确定性的转移技术。在此,我们报告了一种快速的半湿法聚二甲基硅氧烷(PDMS)转移工艺,该工艺借助微米级水滴利用粘附能的变化。使用这种方法,成功地在金云母衬底上组装了具有跨带配置的WS/BiSe异质结构的垂直堆叠。由于互补的带隙和高效的界面电荷转移,基于该异质结构的光电探测器在473 nm可见光入射光下表现出109.9 A/W的优异响应度,在1064 nm近红外光照下表现出26.7 A/W的响应度。这种异质结构的高光响应度表明,我们的转移方法不仅具有时间效率,而且确保了异质界面的高质量。我们的研究可能为快速、大规模制造用于扭曲电子学/谷电子学及其他能带工程器件的各种垂直2D异质结构开辟新途径。