Suppr超能文献

基于人工智能辅助麻醉监测仪的麻醉深度监测

[Anesthesia Depth Monitoring Based on Anesthesia Monitor with the Help of Artificial Intelligence].

作者信息

Guo Yi, Du Qiuchen, Wu Mengmeng, Li Guanhua

机构信息

PLA Rocket Force Characteristic Medical Center, Beijing, 100088.

Beihang University, Beijing, 100191.

出版信息

Zhongguo Yi Liao Qi Xie Za Zhi. 2023 Jan 30;47(1):43-46. doi: 10.3969/j.issn.1671-7104.2023.01.007.

Abstract

OBJECTIVE

To use the low-cost anesthesia monitor for realizing anesthesia depth monitoring, effectively assist anesthesiologists in diagnosis and reduce the cost of anesthesia operation.

METHODS

Propose a monitoring method of anesthesia depth based on artificial intelligence. The monitoring method is designed based on convolutional neural network (CNN) and long and short-term memory (LSTM) network. The input data of the model include electrocardiogram (ECG) and pulse wave photoplethysmography (PPG) recorded in the anesthesia monitor, as well as heart rate variability (HRV) calculated from ECG, The output of the model is in three states of anesthesia induction, anesthesia maintenance and anesthesia awakening.

RESULTS

The accuracy of anesthesia depth monitoring model under transfer learning is 94.1%, which is better than all comparison methods.

CONCLUSIONS

The accuracy of this study meets the needs of perioperative anesthesia depth monitoring and the study reduces the operation cost.

摘要

目的

使用低成本麻醉监测仪实现麻醉深度监测,有效辅助麻醉医生进行诊断并降低麻醉手术成本。

方法

提出一种基于人工智能的麻醉深度监测方法。该监测方法基于卷积神经网络(CNN)和长短时记忆(LSTM)网络设计。模型的输入数据包括麻醉监测仪记录的心电图(ECG)和脉搏波容积描记图(PPG),以及从ECG计算得出的心率变异性(HRV),模型的输出为麻醉诱导、麻醉维持和麻醉苏醒三种状态。

结果

迁移学习下麻醉深度监测模型的准确率为94.1%,优于所有对比方法。

结论

本研究的准确率满足围手术期麻醉深度监测的需求,且该研究降低了手术成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验