Suppr超能文献

基于一维卷积神经网络(1D-CNN)与长短期记忆网络(LSTM)和可穿戴跑步 PPG 记录的青少年体质评估模型。

A Teenager Physical Fitness Evaluation Model Based on 1D-CNN with LSTM and Wearable Running PPG Recordings.

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China.

Engineering Research Center of Intelligent Technology and Educational Application, Ministry of Education, Beijing 100875, China.

出版信息

Biosensors (Basel). 2022 Mar 28;12(4):202. doi: 10.3390/bios12040202.

Abstract

People attach greater importance to the physical health of teenagers because adolescence is a critical period for the healthy development of the human body. With the progress of biosensing technologies and artificial intelligence, it is feasible to apply wearable devices to continuously record teenagers' physiological signals and make analyses based on modern advanced methods. To solve the challenge that traditional methods of monitoring teenagers' physical fitness lack accurate computational models and in-depth data analyses, we propose a novel evaluation model for predicting the physical fitness of teenagers. First, we collected 1024 teenagers' PPGs under the guidance of the proposed three-stage running paradigm. Next, we applied the median filter and wavelet transform to denoise the original signals and obtain HR and SpO. Then, we used the Pearson correlation coefficient method to finalize the feature set, based on the extracted nine physical features. Finally, we built a 1D-CNN with LSTM model to classify teenagers' physical fitness condition into four levels: excellent, good, medium, and poor, with an accuracy of 98.27% for boys' physical fitness prediction, and 99.26% for girls' physical fitness prediction. The experimental results provide evidence supporting the feasibility of predicting teenagers' physical fitness levels by their running PPG recordings.

摘要

人们更加重视青少年的身体健康,因为青春期是人体健康发展的关键时期。随着生物传感技术和人工智能的进步,将可穿戴设备应用于连续记录青少年的生理信号,并基于现代先进方法进行分析是可行的。为了解决传统的青少年体质监测方法缺乏精确的计算模型和深入的数据分析的挑战,我们提出了一种新的青少年体质预测评估模型。首先,我们在提出的三阶段跑步范式的指导下收集了 1024 名青少年的 PPG。接下来,我们应用中值滤波和小波变换对原始信号进行去噪,得到 HR 和 SpO。然后,我们使用 Pearson 相关系数法基于提取的九个物理特征来最终确定特征集。最后,我们构建了一个 1D-CNN 与 LSTM 模型,将青少年的体质状况分为四个等级:优秀、良好、中等和差,男孩体质预测的准确率为 98.27%,女孩体质预测的准确率为 99.26%。实验结果为通过跑步 PPG 记录预测青少年的体质水平提供了可行性证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6977/9032117/e6f5c0520b78/biosensors-12-00202-g001.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验